State of California The Resources Agency Department of Water Resources Northern District # Pesticide Monitoring of Surface Waters in the Northern District #### Memorandum Report hv Julie Culp **April 1990** #### Introduction Pesticides are used throughout Northern California, but most extensively in the Sacramento Valley, for weed and insect control in agriculture and forestry, and also for domestic use, public health concerns, and industry. Pesticides are often applied near surface waters, and, inevitably, some of the pesticide residue enters surface waters during or soon following application through spray drift, rain runoff, agricultural return flow, or infiltration. The main concern about pesticides in surface waters is their potential to be toxic to both people and aquatic life. The purpose of this investigation was to determine the extent of pesticide monitoring of surface waters in Northern California, and to determine additional monitoring requirements. The study area includes the 13 counties within the Northern District (Figure 1) and those monitoring stations within Sutter and Yolo counties that are located on the Sacramento River and on its major drainages. The following agencies were contacted for information: Department of Food and Agriculture (DFA) Department of Fish and Game (DFG) State Water Resources Control Board (SWRCB) Central Valley Regional Water Quality Control Board (CVRWQCB) North Coast Regional Water Quality Control Board (NCRWQCB) Department of Health Services (DHS) Shasta County Agriculture Department Tehama County Agriculture Department Tehama County Farm Advisor's Office Glenn County Agriculture Department Butte County Agriculture Department Colusa County Agriculture Department #### **Past Studies** In 1964, a report was written on pesticide use that explored the then existing programs, discussed specific deficiencies, and proposed steps to be taken to remedy the deficiencies (Fisher, 1964). The major problem of pesticides in water was determined to be the capability of the aquatic food chain to concentrate persistent pesticides. Monitoring the water Figure 1. Northern District Counties environment was realized to be very important in any program of total surveillance for the presence and effects of pesticides. The questions asked then on pesticide levels in the environment and their effects are important and are still being asked today. The State Water Resources Control Board (SWRCB), in cooperation with an "ad hoc" group of members from state agencies and academic institutions, prepared a report in 1971 which reviewed and summarized historic and current pesticide monitoring within California (SWRCB, 1971). The majority of programs in existence then were found to be of limited duration and for a specific purpose only. The little coordination of programs resulted in duplicated effort, and, more seriously, left significant pesticide emissions unmonitored. Within the Northern District, surface water from Clear Lake had been monitored for DDT and methyl parathion as part of a biological study lead by the U. S. Fish and Wildlife Service. The Department of Water Resources (DWR) monitored inflowing streams to Clear Lake for DDT, BHC, dieldrin, and lindane. Sediment samples from Clear Lake and Upper Blue Lake were analyzed for DDT, BHC, lindane, kelthane, heptachlor epoxide, dieldrin, endrin, and aldrin under a joint agency program. The Department of Fish and Game (DFG) had analyzed fish for DDT, dieldrin, and aldrin at Clear Lake, Colusa Basin Drain, and Red Bluff (SWRCB, 1971). #### **Current Monitoring Programs** The Department of Food and Agriculture (DFA) is the lead agency for the regulation of pesticides. DFA is currently working with the DFG and the Central Valley Regional Water Quality Control Board (CVRWQCB) on a study of rice pesticides in the Sacramento Valley from Glenn County to south of Sacramento. This rice pesticide program is the main program in the Sacramento Valley which monitors surface waters for pesticides on a routine basis. Timber pesticide use in the North Coast and Central Valley regions (Figure 1) has been studied by the North Coast Regional Water Quality Control Board (NCRWQCB), the CVRWQCB, and the SWRCB. The SWRCB also monitors surface waters throughout California for its Toxic Substances Monitoring Program. The SWRCB has occasionally monitored pesticides within the Northern District monitoring area at 33 stations since the start of the program. The Department of Health Services (DHS) samples various public drinking water surface sources for pesticides throughout the state. No positive results were reported in the Northern District counties. Some recent limited duration surface water monitoring has been done due to the strawberry fumigation in Shasta and Tehama counties (CVRWQCB, 1984), the wild rice drainage in the Fall River drainage area (CVRWQCB, 1985), and agricultural drainage to Modoc National Wildlife Refuge and Ash Creek Wildlife Management Area (CVRWQCB, 1988). Pesticides were unmeasurable or insignificant in these three studies. The only other time monitoring is done is when there is a complaint or a fish or wildlife kill. #### Rice Pesticide Program The cooperative rice pesticide program between the DFA, DFG, and CVRWQCB was developed in an effort to reduce the discharges of rice pesticides into State surface waters. Since 1983, surface waters have been monitored at 9 permanent sites. Of these, only the Colusa Basin Drain at Highway 20 (CBD5) is within the Northern District, and four are within the monitoring area (Figure 2). Monitoring takes place during the rice field discharge period of late April through June. Besides surface water, aquatic organisms are also sampled. A special study was also conducted in 1988 to better understand rice pesticide movement in the Colusa Basin Drain. Nine additional sites were monitored for this study, all of which are within the Northern District. The City of Sacramento monitors the Sacramento River for pesticides at its water treatment plant. Molinate and thiobencarb are the two major rice pesticides used. A few of the other rice pesticides for which sampling has been conducted are bentazon, carbofuran, carbaryl, and propanil. Both molinate and thiobencarb have been found in agricultural drains and in the Sacramento River at concentrations detrimental to beneficial uses. Molinate in agricultural drains was responsible for the deaths of tens of thousands of fish in the early 1980's (Appendix 1). Bad taste in the drinking water of the City of Sacramento has been attributed to the presence of thiobencarb in the Sacramento River. The highest concentrations of molinate and thiobencarb in the environment (over 2,000 parts per billion (ppb)) were detected in the edible portions of fish during the rice pesticide season (SWRCB, 1984a). In 1984, DHS and DFG developed guidelines and action levels for molinate and thiobencarb. For the protection of the aquatic environment, molinate was not to exceed 90 ppb and thiobencarb was not to exceed 24 ppb. Primary action levels for the protection of water consumers from adverse health effects was set to 20 ppb for molinate and 10 ppb for thiobencarb. A secondary action level of 1 ppb for thiobencarb was recommended because of the bad taste it could cause in chlorinated drinking water. These action levels were derived using the United States Environmental Protection Agency's (EPA) method which assumes that a 10-kg child consumes one liter of water daily. Based on toxicologic evaluations, molinate is considered to be moderately toxic when taken orally and practically non-toxic when it is applied to the skin. Thiobencarb is slightly toxic when taken orally (SWRCB, 1984a). Research on molinate showed that longer water retention periods on rice fields would facilitate dissipation. Molinate was placed on the restricted list in 1984 and releases to State waterways were not allowed for 8 days following application. Retention time was increased to 12 days in 1987 and to 14 days in 1988. No fish kills have been attributed to molinate since 1983 and concentrations in the Sacramento River have been well below the primary action level. Recirculation and ponding of field water was found to facilitate adsorption after studies of thiobencarb's characteristics were made in 1984 (SWRCB, 1984a). Thiobencarb's use has Figure 2. Rice Pesticide Program Monitoring Stations now been restricted to those farms and districts which minimize thiobencarb discharge by using approved water management practices. Bentazon is another rice pesticide which has recently been detected in agricultural drains and in the Sacramento River (SWRCB, 1984a). A primary action level of 8 ppb for bentazon has been recommended by DHS. Fields treated with bentazon can not be drained until harvest time. Because of this requirement, bentazon has almost been eliminated from the Sacramento River and the primary action level has never been in danger of being exceeded. The California registration of bentazon has been suspended and its use has not been permitted since 1989 (DFA, 1989a). A new herbicide, bensulfuron methyl (Londax), has recently been developed and completed the registration process on April 26, 1989. It is expected to be widely used. It attacks broadleaf weeds and sedges as does bentazon. Bensulfuron methyl is applied in amounts of 1.65 oz of active ingredient/acre (DFA, 1989a) as compared to 1 lb/acre for other broadleaf herbicides or 4 lbs/acre for molinate and thiobencarb. When bensulfuron methyl was discharged after a 5 day holding period, concentrations were less than 5 ppb (DFA, 1989b). The detection limit is 0.5 ppb (DFA, 1989a). But since bensulfuron methyl is applied at the same time as molinate and thiobencarb, additional dissipation will occur because of the longer required holding periods. Full field discharge is required shortly after the molinate and thiobencarb holding period in order to prepare fields
for bentazon applications, but this will no longer be necessary with bensulfuron methyl. Bensulfuron methyl also has some effect on grassy weeds, which may allow a reduction in the use of molinate and thiobencarb (DFA, 1989b). No sites within the Northern District are monitored for bensulfuron methyl. So far, the highest concentration of bensulfuron methyl found was 2.08 ppb on May 29, 1989 at the Colusa Basin Drain near Knights Landing (DFA, 1989a; Appendix 1). An action level has not been established yet because bensulfuron methyl first needs to be considered a contaminant. Based on an EPA model, the Allowable Daily Intake (ADI) is estimated to be 1.4 ppm (Marshall Lee, DFA, pers. comm.). #### **Timber Pesticide Programs** For several years, the NCRWQCB required the United States Forest Service (USFS) and private timber companies to monitor surface waters during and after aerial application of pesticides, such as 2,4–D and triclopyr (Garlon), on timber lands (NCRWQCB, 1985). The use of 2,4–D has been restricted since 1985. Garlon use is not restricted (Charles Green, NCRWQCB, pers. comm.). The results of this monitoring indicated that discharges of pesticides into streams did not occur in over 90% of the spray applications. Of those streams that did have pesticide residue, nearly all were under 10 ppb. The highest concentration found was 30 ppb. Timber companies are still required to monitor after aerial sprays. In 1983, the SWRCB, the NCRWQCB, and the CVRWQCB studied the use of the pesticide 2.4-D to determine: 1) levels in surface waters during site treatment and subsequent rainfall, 2) whether State water quality objectives were being met at all times, and 3) the efficacy of present best management practices (BMP) in preventing discharges (SWRCB, NCRWQCB, CVRWQCB 1984; NCRWQCB, 1985). Eight sites were monitored in the North Coast and Central Valley regions (Del Norte, Shasta, and Modoc counties). A non-toxic dye tracer that could be detected by a fluorometer was used in the applications at two of the sites to aid in pesticide detection. The results of these studies showed that the State water quality objectives were being met. Some pesticide discharge did occur, but at levels determined to be within limits for the identified beneficial uses of water. The study proposed a number of recommendations concerning BMP's, monitoring, and laboratory analyses. Some of the recommendations are: 1) to routinely use a dye tracer in all aerial applications where beneficial water uses can be affected by the herbicide, 2) to have 2,4-D applicators routinely monitor during application and have Regional Boards observe and occasionally check monitoring activities, and 3) to revise and standardize BMP guidelines and County Agricultural Commissioner permit terms to call for 100 foot buffers along both sides of flowing and dry intermittent streams, and 5 mph or less wind velocities during 2,4-D application. #### **Toxic Substances Monitoring Program** The Toxic Substances Monitoring Program (TSMP) was begun in 1976 by the SWRCB and has been operated by the DFG. The purpose of the TSMP is to acquire current, consistant data that represent baseline and trend levels of toxic substances in selected streams and lakes throughout the state (SWRCB, 1985). The types of samples analyzed are primarily aquatic organisms, but occasionally soil, sediment, and water samples are also tested. The toxic substances monitored are trace elements and synthetic organic compounds. Pesticides are part of the latter. Tissues from fish and other aquatic organisms are analyzed on a wet weight basis and a lipid weight basis for the presence of organic compounds by gas chromatography. Lipid weight analyses have been made since 1984. These analyses better reflect the source concentrations of fat–soluble pesticides and show less variability than wet weight analyses. Wet weight analyses, however, are preferred because all standards for predator protection and human health are based on wet weight and they also better reflect the exposure of predators or humans to the actual concentrations in freshly caught fish (SWRCB, 1987). Within the Northern District, 28 lake and stream stations have been monitored for pesticides at least once since the start of the program (Figure 3, Table 1). Five stations not within the Northern District but within the monitoring area are included in this investigation. Stations are not monitored every year. The SWRCB decides where monitoring should be done each year based primarily upon requests from the regional boards, but requests from other agencies are also considered. If no problems are found, or if the problems have been sufficiently #### LEGEND - ▲ 16 TSMP monitoring stations within the Northern District. - 31 TSMP monitoring stations not within the Northern District but within the monitoring area. NOTE: See Table 1 for station names. STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES NORTHERN DISTRICT Figure 3. TSMP Pesticide Monitoring Stations 1978 — 1987 ### TABLE 1. SUMMARY OF TOXIC SUBSTANCES MONITORING PROGRAM STATIONS MONITORED EACH YEAR AND DETECTED PESTICIDES WITHIN THE NORTHERN DISTRICT | STATION NAME | | 978
PEST. | | 1979
PEST. | | 1980
PEST. |
 MON. | 1981
PEST. | 1982
 MON. PE | | 1983
MON. PEST. | | 1984
PEST. | | 1985
PEST. | MON. | 1986
PEST. | | 987
PEST. | |--|----------|--------------|-----|---------------|----------|---------------|-----------|---------------|------------------|-----|--------------------|--------|---------------|-------|---------------|------|---------------|-----|----------------| | 1 SMITH R /JED SMITH REDWOOD | x | | l x | | x | | i
i x | | 1 | ŀ | | ! | | [
 | | 1 | | | 1 | | 2 KLAMATH R / KLAMATH GLEN | 1 ^ | 4 | 1 ~ | | i | | 1 | | ì | ì | x | į . | | l | | 1 | | 1 | | | 3 INDIAN CREEK /HAPPY CAMP
4 KLAMATH R /COPCO RES | ł | | ; | | i x | | i | | i | Ī | | ĺ | | l | | I | | Ţ | | | 5 BEAUGHTON CREEK | i | | į | | í | | i | | 1 | - 1 | | 1 | | Į . | | X | | 1 | | | 6 TRINITY R /WILLOW CR | i x | | i x | | i | | X | | 1 | 1 | | 1 | | ļ | | ļ. | | 1 | . ! | | 7 TRINITY R/D/S BURNT RANCH | i T | | i | | İ | | 1 | | 1 | ļ | | 1 | | ! | | ! | | , X | g | | 8 BIG LAGOON | i | | İ | | 1 | | ı | | 1 | ļ | | ! | |] _ | _ | i x | | į. | 1 | | 9 MAD RIVER | İ | | İ | | į. | | X | a | Į | ļ | | i X | gh | X | g | 1 | | x | - 1 | | 10 EEL R /SCOTIA | i x | a | X | | i | | 1 X | | ļ. | ! | | į X | | ļ. | | 1 | | i â | | | 11 VAN DUZEN RIVER/MOUTH | 1 | | 1 | | ļ | | 1 | | Į. | ļ | | ! | | ŀ | | 1 | | Ϊ́х | | | 12 YAGER CREEK/MOUTH | 1 | | 1 | | ! | | ! | | ! | . ; | | 1 | | ì | | ì | | i " | | | 13 LAKE PILLSBURY | 1 | | ! | | ! | | i x | | ! | | | 1 | | i | | i | | i x | a | | 14 LOST RIVER/TULE LAKE | 1 | | 1 | | ! | | l x | _ | } | 1 | | 1 | | i | | i | | i " | i | | 15 SACRAMENTO R /HAMILTON CITY | <u> </u> | | 1 | | ! | | | 4 | 1 | 1 | | i | | i | | i | | i | | | 16 MCCLOUD R /U/S MCCLOUD R BE | ri X | | X | | į, | | X | | 1 | i | | i | | i | | i | | i | j | | 17 SHASTA L /SQUAW CR ARM | ! | | ! | | i x | - | : 0 | а | ì | i | | ì | | i | | İ | | X | ab | | 18 SACRAMENTO R / KESWICK | ! | | ! | | ^ | • | ; ^ | _ | 1 | i | | i | | i | | Ì | | 1 | | | 19 CLEAR LAKE /LOWER LAKE | .! | | 1 | | i | | 1 | | i | i | * | i | | İ | | ĺ | | ŧ | | | 20 CLEAR LAKE /SULPH BANK MINE | 5 1 | | 1 | | ł | | i x | a | i | i | * | ì | | ĺ | | ŀ | | 1 | | | 21 CLEAR LAKE /RATTLESNAKE IS | ļ | | 1 | | - | | | _ | i | i | • | i | | ł | | l | | 1 | | | 22 CLEAR LAKE /RODMAN SLOUGH | ļ | | 1 | | i x | abcdef | i x | abcdefghi | .i | i | | İ | | ł | | 1 | | ļ | | | 23 COLUSA DRAIN /ABEL RD
24 PIT R /PIT 7 POWERHOUSE | 1 | | i | | i x | a | i - | - | i · | ĺ | | 1 | | ı | | | | ! | | | | 1 | | i | | i - | | i | | i | - 1 | | X | a | ļ . | | ļ | | ! | | | 25 FALL RIVER
26 PIT R/D/S HWY 299 BRIDGE | i | | i | | í | | i | | 1 | 1 | | 1 | | ļ | | ! | | i x | | | 26 PIT R/D/S HWI 299 ERIDGE
27 SUSAN R/ HONEY LAKE | i | | i | | í | | i | | ŀ | - 1 | | ł | | ļ . | | İX | | ļ | | | 27 SUSAN R/ HUNEI LARE
28 SUSAN R /LITCHFIELD | i | | i | | i | | į X | ac | ł | - 1 | X | 1 | | ! | | ! | | | | | 29 COLUSA DRAIN/KNIGHTS LAND | ٠i | | i | | i | | X | abcdfj | 1 | | | . j X' | | | acdfjo | ļ | | 1 * | • | | 30 SUTTER BYPASS + | i | | i | | İ | | X | acdfj | | df | X adef | ji x | acdefilmn | 1 | | ! | | - | | | 31 RECLAMATION SLOUGH + | i | | İ | | į X | acdefj | cl X | ac | (X | a | | ! | | ! | | x | adf | i y | | | 32 SACRAMENTO SLOUGH + | ĺ | | İ | | 1 | | 1 | | ļ | | | ļ. | | ! | | 1 . | - CAL | Ŷ | - | | 33 FEATHER R/D/S HWY 99 BR + | İ | | I | | 1 | | 1 | | i | 1 | | ţ | | 1 | | 1 | | . ^ | • | PESTICIDES: PESTICIDES: a DDT b DACTHAL c DIELDRIN d CHLORDANE e TOXAPHENE f TRANSNONACHLOR i alpha hch j endosulphan k HEXACHLOROBENZENE 1 DICOFOL f TRANSMONACHLOR f TRANSMONACHLOR f PENTACHLOROPHENOL (PCP) h TETRACHLOROPHENOL (TCP) X AOURTIC X AQUATIC ORGANISM MONITORED AT THIS STATION * SEDIMENT MONITORED AT THIS STATION + STATION NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA studied, the station will be dropped to make way for new stations elsewhere. This way, both the objectives of long term monitoring and monitoring as many stations as possible over time can be met (SWRCB,1986a). Samples are collected once each year from the chosen monitoring sites. Because the number of samples analyzed at each station in a single year is small, all concentrations detected are considered to be indicators of relative toxic pollution (SWRCB, 1984b). Fifteen pesticides have been detected since 1978 within the Northern District monitoring area (Table 1, Appendix 2). DDT was the pesticide most often detected. Other pesticides that were often detected were chlordane, transnonachlor, dieldrin, endosulphan, and toxaphene. PCP and TCP are not part of the normal organic scan and were tested on
the request of the NCRWQCB (SWRCB, 1987). Data from 1976 and 1977 are not included because different fish tissues were utilized and analytical techniques were still under development (SWRCB, 1984b). #### Discussion The greatest concern regarding pesticide use is the potential toxic effects. Domestic, agricultural, and recreational water supplies can be contaminated by pesticides. At high enough concentrations, pesticides become toxic to both people and aquatic life. Pesticides in water at toxic levels affect aquatic life directly and can cause death, but because many pesticides are capable of bioaccumulating, lower pesticide concentrations can also cause detrimental effects. People can be affected by drinking contaminated water, eating tainted fish, and perhaps through recreational use of surface waters. Guidelines and action levels, such as for rice pesticides, were developed to protect against such adverse effects. The average yearly pesticide use in the 5 Sacramento Valley counties (Shasta, Tehama, Glenn, Butte, and Colusa) for the period of 1974 to 1987 was 4.6 million pounds and in all 13 counties in the Northern District was 5.3 million pounds (Table 2, Figure 4). The peak year was 1981 with a total use of 6.9 million pounds. Eighty-eight percent of all the pesticides applied in the Northern District are applied in the Sacramento Valley counties. Over 80% of all pesticides are applied to agriculture (DFA, 1974 – 1987), of which less than 15% of the total crop acreage is non-irrigated (Figure 5; DWR, 1974). Data from the most recent DWR Northern District land use surveys support this value. These data on pesticide use provide a good idea of where pesticide problems are likely to exist. Without a routine monitoring program, the amount of applied pesticides entering surface waters and possible problems they may cause are unknown. Butte County has the highest average yearly pesticide use of all the Northern District counties, yet no routine monitoring is being done there. Most pesticide monitoring programs are developed only if a known problem exists. The rice pesticide program was developed after a ## TABLE 2. REPORTED PESTICIDE USE IN MILLION POUNDS From Pesticide Use Reports DFA, 1974 - 1987 #### NORTHERN DISTRICT | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | AVERAGE | |--|---|---|---|--|---|---|---|---|---|---|---|--|--|---| | 939 | | | | | | | | | | | | | | | | 0.626
1.156
0.213 | 0.814
1.299
0.409 | 1.070
0.323 | | 1.103
1.661
0.376 | 1.004
1.839
0.460 | 1.447
1.966
0.412 | 1.591
2.069
0.424 | 1.348
2.012
0.389 | 1.613 | 1.205
1.656
0.299 | 1.069
1.280
0.266 | 0.935
1.002
0.270 | 1.583
1.746
0.232 | 1.287
1.125
1.567
0.347
0.318 | | 2.962 | 3.846 | 3.430 | | 4.606 | 5.010 | 5.558 | 6.164 | 5.587 | 4.724 | 4.907 | 4.446 | 3.580 | 5.548 | 4.644 | | 0.127
0.069
0.071
0.003
0.012
0.002 | 0.079
0.079
0.030
0.012
0.013
0.002 | 0.097
0.185
0.052
0.005
0.014
0.016 | | 0.157
0.121
0.051
0.001
0.039
0.011
0.146 | 0.179
0.148
0.043
0.001
0.094
0.008
0.094 | 0.161
0.124
0.020
0.003
0.113
0.009
0.067 | 0.217
0.176
0.072
0.001
0.072
0.010
0.039 | 0.151
0.124
0.021
0.002
0.086
0.008
0.078 | 0.147
0.107
0.019
0.007
0.172
0.006
0.057 | 0.249
0.137
0.030
0.000
0.216
0.009
0.024 | 0.177
0.324
0.045
0.032
0.188
0.003
0.044 | 0.189
0.201
0.036
0.004
0.152
0.008
0.041 | 0.225
0.172
0.062
0.002
0.226
0.021
0.084 | 0.095
0.166
0.151
0.042
0.006
0.107
0.009 | | | - | | | | | | | | | | | | | 0.652
5.296 | | | 156
1.213
1.028
1.962
1.005
1.127
1.069
1.071
1.003
1.002
1.002
1.002
1.003 | 1.156 1.299
1.213 0.409
1.028 0.220
1.962 3.846
1.005 0.003
1.127 0.079
1.069 0.079
1.071 0.030
1.003 0.012
1.002 0.003
1.002 0.002
1.003 0.159
1.377 0.377 | 0.626 0.814 0.827
.156 1.299 1.070
.213 0.409 0.323
.028 0.220 0.283
.028 0.220 0.283
.02962 3.846 3.430
0.005 0.003 0.011
0.127 0.079 0.097
.069 0.079 0.185
0.011 0.030 0.052
0.003 0.012 0.005
0.012 0.013 0.014
0.002 0.002 0.016
.088 0.159 0.068
0.377 0.377 0.448
0.339 4.223 3.878 | .156 1.299 1.070
.213 0.409 0.323
.028 0.220 0.283
2.962 3.846 3.430
2.005 0.003 0.011
.127 0.079 0.097
2.069 0.079 0.185
2.071 0.030 0.052
2.003 0.012 0.005
2.012 0.013 0.014
2.002 0.002 0.016
2.088 0.159 0.068 | 156 1.299 1.070 1.661 1.213 0.409 0.323 0.376 1.028 0.220 0.283 0.326 1.962 3.846 3.430 4.606 1.005 0.003 0.011 0.029 1.127 0.079 0.097 0.157 1.069 0.079 0.185 0.121 1.071 0.030 0.052 0.051 1.003 0.012 0.005 0.001 1.012 0.013 0.014 0.039 1.012 0.013 0.014 0.039 1.012 0.013 0.014 0.039 1.002 0.002 0.016 0.011 1.088 0.159 0.068 0.146 1.377 0.377 0.448 0.555 | 1.156 1.299 1.070 | 1.56 1.299 1.070 | 1.56 1.299 1.070 | 1.156 1.299 1.070 | 1.661 1.839 1.966 2.069 2.012 1.613 1.213 0.409 0.323 | 1.56 1.299 1.070 | 1.56 1.299 1.070 1.661 1.839 1.966 2.069 2.012 1.613 1.656 1.280 0.213 0.409 0.323 0.376 0.460 0.412 0.424 0.389 0.435 0.299 0.266 0.328 0.220 0.283 0.326 0.471 0.441 0.520 0.404 0.424 0.212 0.302 0.962 3.846 3.430 4.606 5.010 5.558 6.164 5.587 4.724 4.907 4.446 0.005 0.003 0.011 0.029 0.184 0.101 0.147 0.135 0.060 0.147 0.135 0.127 0.079 0.097 0.157 0.179 0.161 0.217 0.151 0.147 0.249 0.177 0.699 0.079 0.185 0.121 0.148 0.124 0.176 0.124 0.107 0.137 0.324 0.071 0.030 0.052 0.051 0.043 0.020 0.072 0.021 0.019 0.030 0.045 0.012 0.013 0.014 0.039 0.094 0.113 0.072 0.086 0.172 0.216 0.188 0.012 0.003 0.016 0.039 0.094 0.113 0.072 0.086 0.172 0.216 0.188 0.002 0.002 0.016 0.011 0.008 0.009 0.010 0.008 0.006 0.009 0.003 0.088 0.159 0.068 0.555 0.751 0.598 0.734 0.605 0.575 0.812 0.948 | 1.56 1.299 1.070 1.661 1.839 1.966 2.069 2.012 1.613 1.656 1.280 1.002 1.213 0.409 0.323 1.326 0.471 0.441 0.520 0.404 0.424 0.212 0.302 0.262 1.962 3.846 3.430 1.606 5.010 5.558 6.164 5.587 4.724 4.907 4.446 3.580 1.005 0.003 0.011 1.0029 0.184 0.101 0.147 0.135 0.060 0.147 0.135 0.148 1.127 0.079 0.097 1.069 0.079 0.185 1.069 0.079 0.185 1.011 0.148 0.124 0.176 0.124 0.107 0.137 0.324
0.201 1.003 0.012 0.005 1.003 0.012 0.005 1.003 0.012 0.005 1.003 0.012 0.005 1.003 0.012 0.005 1.003 0.014 0.008 0.009 0.010 0.002 0.007 0.000 0.032 0.004 1.002 0.002 0.016 1.003 0.094 0.113 0.072 0.086 0.172 0.216 0.188 0.152 1.002 0.002 0.016 1.377 0.377 0.448 1.555 0.751 0.598 0.734 0.605 0.575 0.812 0.948 0.779 1.556 1.280 1.002 0.044 0.044 0.041 1.570 0.377 0.377 0.448 1.5661 1.839 1.966 2.069 2.012 1.613 1.656 1.280 1.002 1.002 0.004 0.044 0.041 1.570 0.377 0.377 0.448 1.661 1.839 1.966 2.069 2.012 1.613 1.656 1.280 1.002 1.002 0.007 0.000 0.003 0.008 0.006 0.009 0.003 0.008 0.008 0.006 0.009 0.003 0.008 0.006 0.009 0.003 0.008 0.006 0.009 0.003 0.008 0.006 0.009 0.003 0.008 0.006 0.009 0.004 0.044 0.041 | 1.56 1.299 1.070 | Figure 4. Average Yearly Pesticide Use #### LEGEND Irrigated Land in the Northern District from Bulletin 160-87 (DWR 1987) STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES NORTHERN DISTRICT Figure 5. Irrigated Land large number of fish kills were discovered and bad taste complaints were made by the residents of the City of Sacramento. The problems of rice pesticides and the solutions to these problems are being adequately addressed by the rice pesticide program. Because of this monitoring, some potential problem causing pesticides were detected and their use has thus been restricted. More effective rice management practices have also been developed. The timber pesticides programs have also adequately addressed the use and monitoring of the pesticide 2,4–D. Revised BMP's and monitoring program activities and techniques have been recommended. A routine pesticide monitoring program would enable the detection and control of pesticides throughout the Northern District before any major problems come into existence, such as toxic effects on fish, wildlife, or people. Monitoring would also allow the determination of correct use of pesticides and best management practices. A successful pesticide monitoring program must be based on the type, application, and mobility of pesticides. The monitoring program should be coordinated with other agencies and organizations. Pesticide runoff potential has been studied by the State Water Resources Control Board (SWRCB, 1986b). The SWRCB screened pesticides in surface runoff based on: 1) method of application, 2) timing of application relative to the first major storm, and 3) selected physical and chemical properties. It was found that many pesticides had a runoff loss of about 1 to 2% of the applied amount. Molinate and thiobencarb runoff losses ranged from 9 to 10.8% of the applied amount. Even though there is no definitive relationship between the pesticide concentration observed in fish tissue samples and the actual concentration in water (SWRCB, 1984b), data developed over the past 10 years have shown that the best method for monitoring toxic substances in surface waters is to analyze the tissues of resident aquatic organisms (SWRCB, 1988). Oftentimes, concentrations of pesticides in water are too low to be detected with traditional methods of analyses. Many pesticides are not water soluble, but can be associated with sediment or organic matter (SWRCB, 1984b). Aquatic organisms will often bioaccumulate pesticide residues to levels which may be many hundreds of times the levels found in water, therefore making detection more probable. Using a non-toxic dye during pesticide application as was done in the timber pesticide program could help in the detection of pesticides in surface water in other monitoring programs. Water samples could be taken when the fluorometer indicates the presence of dye and therefore the likely presence of pesticides. High analytical cost is one of the main reasons why surface waters are not being routinely monitored for pesticides. Pesticide residue in surface water occurs in the parts per billion range and tests to detect pesticide residue at these levels may cost around \$100 for each pesticide in a sample (Pace Laboratories, Inc., 1989). Routine monitoring of surface waters for pesticides is needed (Peter Stoddard, DFA, pers. comm.). Right now there is no legal mandate for surface water monitoring like there is for groundwater (DFA Code Division 7, Chapter 2, Article 15) and air (DFA Code Division 7, Chapter 3, Article 1.5). Since cost for testing is the biggest problem, DFA is working on an enzyme-linked immunosorbent assay (ELISA) technique which uses antibodies to analyze pesticides. With the ELISA technique, 50 to 96 operations can be carried out simultaneously, which should greatly reduce the cost for analysis (Wie and Hammock, 1982). Antibodies for molinate and thiobencarb have already been developed. This new technique for testing of pesticides will hopefully soon be available to other State agencies. Resolution No. 90–028 is an amendment of the July 1975 Water Quality Control Plan for the Sacramento River, Sacramento-San Joaquin Delta, and San Joaquin River Basins which updates the pesticide control program for surface waters (CVRWQCB, 1990). The CVRWQCB adopted this resolution on March 31, 1989, and the SWRCB has approved this edition. Water Quality Control Plans also exist for other basins. The goal of the Control Plans is to provide program actions to preserve and enhance water quality and protect beneficial uses. The pesticide control program sets limits on pesticide discharge concentrations in accordance with State and Federal regulations and also includes an implementation plan to meet these set limits. Performance goals and discharge limits have already been established for molinate and thiobencarb. The program calls for surface water monitoring to be used to evalutate effectiveness and help prioritize control efforts. This monitoring will consist primarily of chemical analysis and biotoxicity testing of major water bodies that receive irrigation return flow. Surface water monitoring by the CVRWQCB for the pesticide control program is now limited to rice pesticides (Rudy Schnagl, CVRWQCB, pers. comm.). A baseline monitoring program has not been set up mainly due to lack of funds and one is not forseen in the near future. Monitoring by others is needed and encouraged. All monitoring data should be made available to the CVRWQCB so that it may be used to help meet the goals of the Water Quality Control Plan. #### Conclusions and Recommendations Routine pesticide monitoring of surface waters within the Northern District is not being done in an adequate manner. Most monitoring only occurs when a problem, such as a large fish kill, is discovered. The rice pesticide program was developed for just such a reason. In the TSMP, only a few stations are monitored each year for pesticides, and samples are probably not being collected at the time of peak pesticide use. Butte County, which has the highest average yearly pesticide use, has not been monitored for the TSMP except once at the Sacramento River near Hamilton City. Detectable amounts of pesticides in surface waters are only present during the application season or just shortly thereafter. A non-toxic dye used in the pesticide application may help pinpoint the optimal time to take water samples. Aquatic organisms are considered to be a better indicator of the environment because of their ability to bioaccumulate in their tissues many of the pesticides that are used. Sampling of aquatic organisms is not quite as time dependent as is the sampling of surface water. Higher concentrations of pesticides in aquatic organisms than in surface waters allow easier detection. A good pesticide monitoring program should be a coordinated effort with other agencies and organizations. The selection of many of its monitoring sites should be based upon where the majority of pesticides are being applied, as these areas are where problems are most likely to exist. Monitoring should also take place during the time of peak pesticide use so that possible worst case situations can be discovered. The type and mobility of pesticides used and the application process also needs to be considered. Such a pesticide monitoring program should enable the detection of pesticide contamination before any serious problems arise. The implementation plan of the CVRWQCB's pesticide control program of the Water Quality Control Plan calls for monitoring and management practices to minimize or eliminate the amount of pesticide discharge and would be a good plan to follow. The CVRWQCB has not set up a baseline monitoring program and will rely on the monitoring data collected by others to help them meet the Plan's goals. #### REFERENCES - CVRWQCB, 1984. Office Report Results of Strawberry Fumigation Monitoring, Shasta and Tehama Counties. July 3, 1984. Memorandum. Central Valley Regional Water Quality Control Board. - CVRWQCB, 1985. Monitoring of Wild Rice Drainage and Receiving Waters in the Fall River Drainage of California. March 1985. Central Valley Regional Water Quality Control Board. - CVRWQCB, 1988. Evaluation of Water Quality Management Problems Caused by Agricultural Drainage Entering Modoc National Wildlife Refuge and the Ash Creek Wildlife Management Area. June 1988. Central Valley Regional Water Quality Control Board. - CVRWQCB, 1990. Resolution No. 90-028. Amendment of the Water Quality Control Plan for the Sacramento River (5A) Sacramento-San Joaquin Delta (5B) San Joaquin (5C) Basins. Central Valley Regional Water Quality Control Board. - DFA, 1974 1987. Pesticide Use Reports 1974 1987. Department of Food and Agriculture. - DFA, 1989a. Rice Herbicide Program Update Nos. 1 8. Department of Food and Agriculture, Environmental Monitoring and Pest Management. - DFA, 1989b. 1989 Program to Prevent Off-site Movement of Pesticides from California Rice Fields (Draft). February 1, 1989. State of California; Department of Food and Agriculture; Division of Pest Management, Environmental Protection and Worker Safety; Environmental Monitoring and Pest Management Branch. - DWR, 1974.
The California Water Plan Outlook in 1974. November 1974. Department of Water Resources Bulletin No. 160-74. - DWR, 1987. California Water: Looking to the Future. November 1987. Department of Water Resources Bulletin 160-87. - Fisher, 1964. Preliminary Report on Pesticide Use in California. June 1964. Governor Edmund G. Brown's Committee on Pesticide Review. Hugo Fisher, Chairman. - NCRWQCB, 1985. Control of Pesticides to North Coast Waters (Final). February 27, 1985. North Coast Regional Water Quality Control Board. - Pace Laboratories, Inc. 1989. Proposal for Professional Laboratory Services for the Ground Water Toxic Substances Investigation. - SWRCB, 1971. A Review of Pesticide Monitoring Programs in California. February 1971. State Water Resources Control Board. - SWRCB, 1984a. Water Quality And Pesticides Rice Herbicides: Molinate and Thiobencarb. California State Water Resources Control Board, Special Projects Report No. 84-4SP. - SWRCB, 1984b. Toxic Substances Monitoring Program 1984. State Water Resources Control Board Water Quality Monitoring Report No. 86-4WQ. - SWRCB, 1985. Toxic Substances Monitoring Program 1985. State Water Resources Control Board, Water Quality Monitoring Report No. 87-1WQ. - SWRCB, 1986a. Toxic Substances Monitoring Program 1986. State Water Resources Control Board, Water Quality Monitoring Report No. 88-2. - SWRCB, 1986b. Sacramento River Toxic Chemical Risk Assessment Project (Draft Interim Report). March 1986. Division of Water Quality, State Water Resources Control Board, Regional Water Quality Control Board, Central Valley Region. - SWRCB, 1987. Toxic Substances Monitoring Program 1987. State Water Resources Control Board, Water Quality Monitoring Report No. 89-1. - SWRCB, 1988. Water Quality Assessment for Water Years 1986 & 1987. September 1988. Division of Water Quality, State Water Resources Control Board, Water Quality Monitoring Report No. 88-1WQ. - SWRCB, NCRWQCB, CVRWQCB, 1984. Monitoring of Silvicultural Use of 2,4-D in Northern California. January 1984. State Water Resources Control Board, North Coast Regional Water Quality Control Board, Central Valley Regional Water Quality Control Board. - Wie, S. J. and B. D. Hammock, 1982. Development of Enzyme-Linked Immunosorbent Assays for Residue Analysis of Diflubenzuron and BAY SIR 8514. J. Agric. Food Chem. 30:949-957. ## APPENDIX 1 DATA FROM RICE PESTICIDE PROGRAM (DFA 1989a, DFA 1989b, SWRCB 1984a) ## 1989 MONITORING DATA RICE HERBICIDE UPDATES DFA 1989a concentrations in water (ppb) | STATION | 4-21 | 5-15 | 5-22 | 5-25 | Date
5-29 | month -
6-1 | day
6-5 | 6-8 | 6-12 | 6-15 | 6-19 | 7-3 | |--|----------------------|--|---------------------|--|---|---|--------------------------------------|---------------------------------|--|--|---|------------------------------| | 1 | | | | | M | OLINATE | | | | | | | | CBD1
CBD5
SS1
BS1
SRRUN4
SR1
SR2
SR3
SR4 | <1
<1
<1
<1 | 14
40
1
7
<1
<1
<1
<1 | 36
49
5
20 | 40
51
12
23
1
4
1
1
<1 | 14
19
14
26
3
6
2
2
1 | NA
60
23
39
6
<1
4
4 | 51
36
30
37
5
22
3 | 38
33
22
43
55
4 | 25
28
24
30
4
33
33
3 | 22
23
23
25
25
22
22
23 | 17
15
16
13
1
DISC
<1
DISC
DISC | 4
4
5
5
<1
<1 | | | | | | | BENSUL | J'URON ME | THYI. | | | • | | | | cnot | | <.5 | 0.9 | 0.98 | 2.08 | 1.79 | 2.0 | 1.34 | 1.63 | 0.82 | | | | CB05
SS1
BS1 | | | <.5 | | <.5 | <.5 | 0.6 | 0.7 | 0.6 | 0.54 | | | | SRRUN4
SR1
SR2
SR3
GR4 | | | <.5 | | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | | | | + | CBD1 | COLUSA BASIN DRAIN NEAR KNIGHTS LANDING IN YOLO CO. | |---|--------|--| | | CBD5 | COLUSA BASIN DRAIN AT HIGHWAY 20 IN COLUSA CO. | | 4 | 551 | SACRAMENTO SLOUGH AT DWR GAGE IN SUTTER CO. | | 4 | 1151 | BUTTE SLOUGH AT HIGHWAY 20 IN SUTTER COUNTY | | + | SRRUN4 | SACRAMENTO RIVER 3KM D/S CONFLUENCE CBD | | | SR1 | SACRAMENTO RIVER AT VILLAGE MARINA IN SACRAMENTO CO. | | | SR2 | SACRAMENTO RIVER AT FREEPORT BRIDGE IN SACRAMENTO CO. | | | SR3 | SACRAMENTO RIVER AT WALHUT GROVE BOAT DOCK IN SACRAMENTO CO. | | | CD A | ENCHAMMED DIVER AT BIO UISTA MUNICIPAL DOCK IN SOLANO CO. | ^{*} STATION WITHIN NORTHERN DISTRICT + STATION NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA NA NOT AVAILABLE DISC DISCONTINUED Concentrations (ppb) of molinate (Ordram) detected at nine monitoring sites sampled in 1988. | Sampling | | | | Hot. | Itoring Si | | | | | |--------------|------|------|---------------|------|--------------|--------------|------|-----|------| | Dale
1725 | CBUI | cons | \$\$1
{1.0 | 651 | SARUNT | \$#1
(1.0 | SRZ | SR3 | ŚR | | 4/25 | 1.0 | 3.0 | (1.0 | (1.0 | | (1.0 | | | | | 5/2 | 54 | 9.0 | <1.0 | 6.0 | | (1.0 | | | | | 5/9 | 34 | 30 | 4.0 | 2.0 | | <1.0 | | | | | 5/12 | 3/t | 52 | 6.0 | 14 | 1 1.0 | 3.0 | 3.0 | 3.0 | C1.0 | | 5/16 | 62 | 69 | 7.0 | 23 | 6.0 | 5.0 | 4.0 | 3.0 | 2.0 | | 5/19 | 60 | 76 | 30 | ųġ | . 11 | 7.0 | 6.0 | 4.0 | 2.0 | | 5/23 | 61 | 89 | 25 | 31 | 2.0 | 6.0 | 5.0 | 6.0 | 3.0 | | 5/26 | 67 | 83 | 18 | 33 | 12 | 8.0 | 5.0 | 5.0 | 5.0 | | 5/30 | 55 | 52 | 55 | 52 | . 12 | 8.0 | 7.0 | 1.0 | ή. τ | | 6/5 | ባካ | ΨØ | 29 | 35 | 6.0 | 6.0 | 6.0 | 7.0 | 3.0 | | 6/6 | | 31 | SįI | 33 | 8.0 | 7.0 | 7.0 | 1.0 | ň.(| | 6/9 | 26 | 21 | 54 | 45 | 6.0 | 6.0 | 5.0 | 5.0 | 5.0 | | 6/13 | 18 | 17 | 50 | 30 | | 1.0 | 4.0 | | | | 6/20 | 12 | 9.0 | 11 | 14 | | (1.0 | <1.0 | | | | 6/27 | 7.0 | 5.0 | 6.0 | 7.0 | | (1.0 | <1.0 | • | | Concentrations (ppb) of mollinate (Ordram) detected at nine sites within the drainage area of the Column Basin Drain mampled in 1988, $^{\rm L}$ | ար1 Լոբ | | Honitoring Site ! | | | | | | | | | | |---------|------|-------------------|------|------|------|-------|-----|------|-------------|--|--| | Date | CROS | CHOG | 05 | 115 | 07 | 58 | 09 | DIO | <u>5</u> 11 | | | | 5/19 | 61 | 91 | ~5B~ | 21 | 104" | -1i5" | 35 | -66- | -16- | | | | 5/23 | 75 | 88 | 66 | 58 | 305 | 21 | 21 | 46 | 118 | | | | 5/26 | 62 | 68 | 311 | . 33 | ής | 50 | 70 | 99 | 11.1 | | | | 5/30 | 511 | ħΠ | 37 | 18 | 21 | 61 | ЙO | 66 | 21 | | | | 6/2 | 54 | 38 | 30 | 15 | Ϊġ | 15 | 211 | 101 | 18 | | | | 6/9 | 26 | 19 | is | 11 | 11 | á | 10 | 111 | 16 | | | - 1. Samples collected by the Department of fish and Game and analyzed by 101 Americas Inc. - Colusa Basin Drain at Boads 109 and 99E near Enight's Landing in Yolo County. Colusa Basin brain at Highway 20 in Colusa County. Sacramento Slough at BMR gauge station in Sutter County. Butte Slough at Highway 20 in Sutter County. Sacramento Biver, 3 km downstream from confluence with Colusa Basin Drain. Sacramento Biver at Village Harina in Sacramento County. Sacramento Biver at Freeport Bridge in Sacramento County. Sacramento Biver at Valmut Grove Boat Dock in Sacramento County. Sacramento Biver at Rio Vista Hunicipal Book in Solano County. 2. **4** cm) t • cups - 4-851 4-851 - 4-50m024 581 - SH2 - 583 - Sacramento River at Rio Vista Hunicipal Dock in Sciano County. - CBH2 Colusa Basin Drain at County Line Road in Colusa and Yolo Counties. - Colusa Basin Drain at Haxwell Road in Colusa County. CEB6 - 115 · bifi - 07 - 99 ● - Colusa Basin Drain at Road 14 in Glenn County. Willow Creek at Road 61 in Glenn County. Honter Creek at Four Hite Road in Colusa County. Stone Corral Creek at Four Hite Road in Colusa County. Glenn-Colusa Irrigation District Drain at Two Hite Road in Colusa County. Lurilne Creek at Lurilne Road in Colusa County. Freshwater Creek at San Jose Road in Colusa County. • 117 - 1110 - ni i - 3. Stanks in table indicate that no samples were taken. - WITHIN NORTHERN DISTRICT - NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA Concentrations (ppb) of thiobencarb (Bolero) detected at nine monitoring sites sampled in 1988. | Sampl Eng | | Honitoring Site | | | | | | | | |-----------|------|-----------------|------|------|----------------|------|------|-------------|------| | Date | CBOI | CDOS | ŠŠĪ | BSI | SRRUH | ŠŘÍ | SRŽ | <u>sn</u> j | 584 | | りだる | ₹0.5 | (0.5 | (0.5 | (0.5 | - 1 | (0.5 | ₹0.5 | | | | 5/? | (0.5 | (0.5 | (0.5 | (0.5 | | (0.5 | (0.5 | | | | 5/12 | (0.5 | (0.5 | (0.5 | (0.5 | 0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 5/16 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 5/19 | 0.6 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 5/83 | 1.4 | 0.6 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 5/26 | v.6 | cu.5 | (0.5 | (0.5 | (0.5 | (0.5 | <0.5 | (0.5 | (0.5 | | 5/30 | 0.6 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | ₹0.5 | (0.5 | | 6/5 | 3.6 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 6/6 | 1.7 | (0.5 | (0.5 | (0.5 | .<0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 6/9 | 3.3 | (0.5 | <0.5 | 0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 6/13 | 5.8 | (0.5 | <0.5 | <0.5 | | <0.5 | (0.5 | | | | 6/50 | 4.5 | (0.5 | <0.5 | 1.0 | | ₹0.5 | (0.5 | | | | 6/27 | 1.5 | (n.5 | (0.5 | (0.5 | | (0.5 | (0.5 | | | Concentrations (ppb) of thiobencarb (Bolero) detected at nine sites within the drainage area of the Colusa Basin Dealn sampled in 1988. | Samidling | Honitoring Site 2 | | | | | | | | | |-----------|-------------------|------|------|------|------|------|------|------|------| | Date | CHD2. | C006 | 115 | 116 | Di - | D8 | 59 | bio | bii | | 5/19 | (0.5 | ₹8.5 | ₹0.5 | ₹0.5 | (0.5 | (0.5 | ₹0.5 | ₹0.5 | ₹0.5 | | 5/23 | 0.6 | <0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 |
| 5/26 | <0.5 | <0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | | 5/30 | <0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | <0.5 | (0.5 | (0.5 | | 6/5 | (0.5 | 0.6 | <0.5 | (0.5 | 1.6 | (0.5 | (0:5 | (0.5 | (0.5 | | 6/9 | (0.5 | 1.0 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | (0.5 | - 1. Samples collected by the Department of fish and Game and analyzed by Valent USA Corporation. - Colusa Basin Brain at Boads 109 and 99t near Knight's Landing in Yolo County. Colusa Basin Brain at Highway 20 in Colusa County. Sacramento Slough at DWR gauge station in Sutter County. Butte Slough at Highway 20 in Sutter County. Sacramento Blyer, 3 km downstream from confluence with Colusa Basin Drain. Sacramento Blyer at Village Harina in Sacramento County. Sacramento Blyer at Walnut Grove Bost Bock in Sacramento County. Sacramento Blyer at Walnut Grove Bost Bock in Sacramento County. Sacramento Blyer at Walnut Grove Bost Bock in Sacramento County. 2.4 CB01 • CB05 CHP5 - † 551 | 851 | Shimmir - SRI - SRZ - SRU Sacramento River at Rio Vista Hunicipal Dock in Solano County. - 0895 - CBb6 - 96 - 117 - 100 - Colusa Basin Brain at County Line Road in Colusa and Yolo Counties. Colusa Basin Brain at Haxwell Road in Colusa County. Colusa Basin Brain at Road Willin Glenn County. Willow Creek at Road 61 in Glenn County. Hunter Creek at Four Hile Road in Colusa County. Stone Corral Creek at Four Hile Road in Colusa County. Glenn-Colusa Prigation District Brain at Two Hile Road in Colusa County. Lurline Creek at Lurline Road in Colusa County. Freshwater Creek at San Jose Road in Colusa County. - 010 011 Freshwater Creek at San Jose Road in Colusa County. - 3. Blanks in table indicate that no samples were taken. - WITHIN NORTHERN DISTRICT - + NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA Concentrations (ppb) of molliste (Ordram) and thiohencarb (Holaro) in the Sociamento River at the intake to the City of Sacramento water treatment facility in 1988. | Sampling | Concentr | ation_(ppb) | Sampling | | Lon (ppb) | |-------------|----------|---|----------|----------|-------------| | Date
5/j | molinato | thlobenearb | Date | molinate | thlobencarb | | 5/3 | 70.10 | (0.10 | 5/28 | 3.6 | (0.10 | | 5/5 | 0.22 | <0.10 · | 5/23 | 3.2 | 0.10. | | 5/6 | 0.11 | <0.10 | 5/30 | 3.4 | (O. 10 | | 5/1 | ¢0.10 | <0.10 | 5/31 | 3.8 | (0.10 | | 5/0 | <0.10 | <0.10 | 6/1 | 3.5 | 0.13 | | 5/9 | cg. ta | ₹0.10 | 6/2 | 4.1 | 0.13 | | 5/10 | 1.6 | (0.10 | 6/3 | 4.0 | 0.21 | | 5/11 | 1.2 | (O. 10 | 6/4 | 3.0 | 0.11 | | 5/12 | 17.01 | cn. 10 | 6/5 ' | 3.7 | 0.13 | | 5/1.1 | 0.91 | <0.10 | 6/6 | 3.0 | 0.14 | | 5/14 | 1.1 | <0.10 | 6/1 | 3.4 | 0.15 | | 5/15 | 1.5 | (O. 10 | 6/8 | 2.3 | 0.15 | | 5/16 | F.Ö | (0.10 | 6/9 | 2.0 | 0.13 | | 5/17 | 2.11 | (0.10 | 6/10 | 2.3 | 0.15 | | 5/10 | 4.5 | (0.10 | 6/11 | 2.0 | 0.15 | | 5710 | 1.9 | (O. 10 | 6/12 | 1.7 | 0.13 | | 5/20 | ๆ.ยี | (0.10 | 6/13 | . 1.1 | 0. 12 | | 5/21 | 9.7 | 10.10 | 6/19 | 1.2 | <0.10 | | 5/22 | 1.9 | (0.10 | 6/15 | 1.1 | (0.10 | | 5/23 | 2.6 | co. 10 | 6/16 | 0.1 | (0.10 | | 5/21 | i.o | (0.10 | 6/17 | 0.52 | (0.10 | | 5/25 | 1.9 | <0.10 | 6/20 | 0.29 | (0.10 | | 5/26 | 3.1 | (0.10 | 6/55 | 0.27 | (0.10 | | | | | | | | | 5/27 | 1.5 | <n. 10<="" td=""><td>6/24</td><td>0.20</td><td><0.10</td></n.> | 6/24 | 0.20 | <0.10 | Samples coffeeted and analyzed by the City of Sacramento. Concentrations (ppb) of bentazon (Basagran) during 1988 in the Sacramento filver at Sacramento at the intake to the water treatment facility and in water at the facility that had undergone all standard treatment steps. | * Sampling | Hon Ltor! | ng Site! | | |--------------|--------------|----------|--| | Date | \$88
(0.5 | SAT | | | 3 724 | ₹0.5 | (0.5 | | | 6/3 | ₹0.5 | <0.5 | | | 6/10 | (0.5 | (0.5 | | | 6/17 | (0.5 | (0.5 | | | 6/24 | (0.5 | (0.5 | | | 7/1 | (0.5 | (0.5 | | | 8/25 | (0.5 | <0.5 | | | 8/28 | <0.5 | `<0.\$ | | | 8/31 | (0.5 | (0.5 | | | 9/3 | (0.5 | (0.5 | | | 9/1 | 0.53 | (0.5 | | | 9/5 | 0.53 | ₹0.5 | | | 9/6 | <0.5 | (0.5 | | | 970 | (0.5 | (0.5 | | | 9/11 | (0.5 | (0.5 | | | 9/14 | (0.5 | (0.5 | | | 9/17 | (0.5 | (0.5 | | - 1. Samples collected and analyzed by the City of Sacramento. - SHH Sacramento liver at Sacramento at the intake to the municipal water treatment facility. - SRT Sacramento River water treatment facility in Sacramento where the treated water enters the distribution system. Concentrations of carbaryt (Sevin) and carbofuran (Furmdan) in the Sacramento River at Sacramento at the Intake to the water trentment facility in 1988. | Samp! Ing | Concentr | ation (pph) | |---------------|----------|-------------| | ₫ŋ <u>ţ</u> e | carpatal | carboluran | | 5/1 | (0.5 | CJ.0 | | 5/10 | (0.5 | <1.0 | | 5/11 | <0.5 | <1.0 | Samples collected and analyzed by the City of Sacramento. Concentrations (ppb) of bentazon (Basagran) detected at three monitoring sites sampled in 1988, $^{\rm 1}$ | Sampling | Ho | nitoring S | lte ? | |----------|------|------------|--------------| | Date | CDDI | 231 | <u> 3ñ 1</u> | | 5723 | ₹8.5 | (0.5 | ₹0.5 | | 5/30 | 0.5 | <0.5 | (0.5 | | 6/2 | 0.6 | 0.5 | (0.5 | | 6/6 | 0.8 | | ₹0.5 | | 6/9 | 1.3 | 0.6 | (0.5 | | 6/20 | 1.3 | · 0.9 | (0.5 | | 6/23 | 2.1 | 1.2 | 0.5 | | 6/27 | η. 1 | 2.3 | (0.5 | | 6/30 | 3.7 | 2.0 | (0.5 | | 7/4 | 5.5 | 2.6 | (0.5 | | 7/11 | 5.3 | 2.0 | (0.5 | | 7/18 | 3.3 | 2.5 | (0.5 | | 7/25 | 2.7 | 1.6 | (0.5 | | 8/1 | 2.1 | 2.0 | (0.5 | | 8/0 | 2.1 | 3.0 | (0.5 | | 0/15 | 1.5 | 2.1 | (0.5 | | 8/22 | 2:1 | 1.8 | (0.5 | | 8/25 | 2.1 | 2.8 | 0.6 | | 8/29 | 1.7 | 2.0 | (0.5 | | 9/1 | 2.3 | 2.1 | 0.6 | | 9/5 | 2.1 | 2.2 | | | 9/8 | 1.8 | | 0.6 | | 9/12 | 2.4 | 1.8 | 0.6 | | 9/15 | | 1.7 | 0.8 | | 9/19 | 1.7 | 1.5 | 0.6 | | 9/26 | 1.3 | .1.2 | 0.5 | | 3/20 | 0.9 | 1.0 | (0.5 | 2.5 - Samples collected by the Department of Fish and Game and enalyzed by Euseco California Analytical Laboratory. - CBD 1 - Column Damin Drain at Roads 109 and 99E mear Enight's Landing in Yolo County. Sacramento Slough at DWR gauge station in Sutter County. Sacramento River at Village Harins in Sacramento County. 531 SHI Concentrations (ppb) of propanti detected at two monitoring sites sampled in 1980. $^{\rm 1}$ | Samp Jing | _Hon1tor1 | ng Site ² | |-----------|-----------|----------------------| | Pate | CBDI | šñ i — | | 5/23 | ₹8.₹ | ₹8.5 | | 5/26 | (0.5 | (0.5 | | 5/30 | (0.5 | <0.5 | | 6/2 | 1.1 | ₹0.5 | | 6/6 | (0.5 | (0.5 | | 6/9 | (0.5 | ₹0.5 | | 6/13 ' | ₹0.5 | ⟨0.5 | | 6/16 , | ₹0.5 | (0.5 | | 6/20 | (0.5 | (0.5 | | 6/23 | (0.5 | (0.5 | | 9/6 | (0.5 | (0.5 | | 9/8 | (0.5 | (0.5 | | 9/12 | (0.5 | (0.5 | | 9/15 | (0.5 | (0.5 | - Samples collected by the Department of fish and Game and analyzed by Enseco California Analytical Laboratory. - 2. CBD) Coluse Basin Drain at Roads 109 and 99E near Knight's Landing In Yolo County, - Sacramento River at Village Harina in Sacramento County. Concentrations (ppb) of carbofuran (furadan) detected at three monitoring sites sampled in 1988. $^{\rm L_1}$ | | Me | mitoring S | 16.4 | |--------------|---------------|------------|------| | Date | căă i | 35 i | ŠŘI | | 1 725 | ~6 .76 | ₹1.0 | (1.0 | | 4/28 | 3.6 | <1.0 | (1.0 | | 5/2 | 2.7 | 1.2 | (1.0 | | 5/5 | 1.5 | 1.2 | (1.0 | | 5/9 | 3,2 | 1.0 | (1.0 | | 5/12 | 2.0 | 2.1 | <1.0 | | 5/16 | 1.4 | 1.8 | <1.0 | | 5/19 | 1.4 | 1.4 | (1.0 | | 5/23 | <1.0 | 1.2 | (1.0 | | 5/26* | (1.0 | (1.0 | (1.0 | | 5/30 | <1.0 | <1.0 | (1.0 | | 6/2 | <1.0 | <1.0 | (1.0 | | 6/6 | <1.0° | <1.0 | <1.0 | | 6/9 | ₹1.0 | <1.0 | <1.0 | - Samples collected by the Department of Fish and Game and analyzed by FMC Corporation. - Samples were also analyzed for the presence of 3-hydroxycarbofuran and 3-ketocarbofuran. Concentrations were below 1.0 ppb, the detection limit of each compound. - j. CBD1 Colusa Basin Drain at Roads 109 and 99E near Enight's Colusa maste mean at house the Landing in Yolo County. Landing in Yolo County. Sacramento Slough at DVM gauge station in Sutter County. Sacramento River at Village Harina in Sacramento County. - 4. Analyses performed by the California Department of Fish and Came. Concentrations (ppb) of carbaryl detected at two monitoring sites sampled in 1988. | Samp1 log | Honitorin | e Site ¹ | |-------------------|-----------|---------------------| | Date | CODI | šňi | | 67 i ⁻ | ₹5.0 | 75.0 | | 8/7 | (5.0 | • | | 0/15 | (5.0 | (5.0 | | 0/22 | (5.0 | (5.0 | | 0/25 | (5.0 · | <5.0 | | 0/29 | (5.0 | (5.0 | - Samples collected by the bepartment of Fish and Game and analyzed by Enseco Catifornia Analytical Laboratory. - 2. CHD1 Colusa Dasin Drain at Roads 109 and 99% near Knight's Landing In Ynio County. Sacramento River at Village Harina in Sacramento County. ## SUMMARY OF MOLINATE AND THIOBENCARB CONCENTRATIONS IN AGRICULTURAL DRAIN EFFLUENT DISCHARGING TO THE SACRAMENTO RIVER ## MOLTMATE | AGRICULTURAL DRAIN 1/ (Station) | YEAR | SURVEI LLANCE
PERIOD | OBSERVATIONS (n) | CONCENTRATION
RANGE (ug/1) | DURATION OF
DETECTION [Date] | REFERENCE | |---------------------------------|--------|-------------------------|------------------|---------------------------------------|---------------------------------|------------------------------| | Colusa Baslu Drain | 1983 | 4/27-7/11 | 17 | <1.0-211 2b/ | 54 Days (5/18-7/11) | Finlayson and fev. 1981b | | | 1982 | 5/6-1/14 | 15 | <1.0-204 28/ | 47 * (5/21-7/7) | Pintayoon and faw, 1991a | | , | 1981 | 3/9-9/28 | . 29 | <1.0-310 | 77 4 (4/27-7/13) | Tanji et mi., 1982 | | | 1981 | 4/30-8/14 | 16 | 10-340 | 74 * (4/30-7/14) | Finlayson et al., 1982 | | | 1980 | 2/19-12/15 | 25 % | <1.3-190 | ND <u>3</u> / | Tanji et al., 1982 | | | 1980 | 6/10-9/8 | 0 | <1.0-60 | | Finlayson et al., 1982 | | eclamation Slough 4/
R01500) | 1902 | 5/6-1/14 | ٠ 16 | <1.0-82 Za/ | 47 * (5/21-7/7) | Finlayson and Lew, 1981s | | | . 1981 | 4/30-N/14 | 16 | <1.0-187 | 75 " (4/30-7/14) | finlayson et al., 1982 | | Sycamore Stoogh | 1983 | 6/7-6/21 |
J | 11-60 | /- | Cornacchia and Schnagi, 1981 | | | 1982 | 5/6-1/14 | 16 | <1.0-187 Za/ | 49 " (5/25-7/14) | Finiayson and Lew, 1983a | | Sacramento Slough | 1903 | 1/27-7/11 | 17 | < 1-68 2b/ | 46 " (5/26-7/11) | Fintayson and Lew, 1983b | | Butte Stough , | 1982 | 5/6-7/14 | 16 | <1.0-187 Za/ | 47 * (5/21-7/7) | Finlayson and tew, 1983a | | Intomas Drath
(ND1000) | 1983 | 6/7-6/21 | 3 | 14-90 | нр | Cornacchia and Schnagt, 1983 | | | 1782 | 5/6-7/14 | 16 | <1.0-141 | 47 " (5/21-7/7) | Fintayson and Lev, 1983a | | | 1976 | 5/18-7/20 | 9 | <20-210 | 42 " (5/25-7/6) | Van de Pol and Plescia, 1978 | | Aberty Cut 🋂 | 1983 | 6/23 | 2 | 59,84 6 b,c/ | ND | Cornechia and Schnagi, 1991 | | oe brata ⁵ / | 1983 | 6/17
6/23 | 3 | 98
57,75,67 <u>6b.c.d</u> / | ND
ND | : | | THTOBENCARB | ****** | | * dart . | · · · · · · · · · · · · · · · · · · · | | | | Colusa Manin Drain | 1983 | 1/27-7/11 | 17 | <0.5-11.3 ⁶ / | 43 days (5/31-7/11) | Finlayson and Lew, 1983h | | | 1982 | 5/6~7/14 | 16 | <1.0-57 | 40 " (5/21-6/30) | Finlayson and Lew, 1983a | | | 1981 | 4/30-8/14 | 16 | <1.0-21 | 49 " (5/12-6/30) | Finlayson et 41., 1982 | | golamation Slough
NOISOO) | 1902 | 5/6-7/14 | 16 | <1.0-48 | 47 * (5/21-1/7) | Finlayson and Lew, 1983a | | | 1981 | 4/30-8/14 | 16 | <1.0-39 | 28 " (5/18-6/15) | Finlayson et al., 1982 | | iyoamare Stough
IND108) | 1982 | 5/6-7/14 | 16 | <1.0-110 | 40 " (5/21-6/30) | Finlayson and Lew, 1983a | | Sacramento Stough | 1983 | 4/27-1/11 | 17 | <0.5-4.9 <u>6</u> / | 38 " .(6/3-7/11) | Finlayson and Lev, 1983b | | litte Slough | 1902 | 5/6-7/14 | 16 | <1.0-10 | 36 " (5/25-6/30) | Finlayson and Lev, 1983a | | latomas Drain
(RD1000) | 1983 | 6/17-6/21 | 1 | 2.3-14 | ND 1/ | Cornacchia and Schnagt, 1983 | | Liberty Cut 5/ | 1983 | 6/23 | . , | 2.5, 3.0, <u>6a,b</u> / | ND | • | | Toe Brain 5/ | 1983 | 6/17 | 1 | 3.3 | ND | • | | | | 6/23 | 4 | 2.5, 2.7 68,C/ | ND | • | | | | | | 2.4, 3.0 | | | $^{{\}cal M}$ Data nelected from stations located near the outfall to the Sacramento River. ^{2/} Sblinate (a) split and (b) replicate analyses performed by Stauffer Chemical Company (STC): Refer to Appendix 2 for analytical methods. ^{3/} HD: Not determined due to insufficient data. ^{4/} Discharges to the Sacramento River via Sacramento Slough. ^{5/} Discharges to the Horthern Delta at Prospect Slough. Thiobencarb replicate analysis performed in park by (a) Chevron Chemical Company (CCC), (b) STC, (c) But, or (d) California Analytical. ## . MOLINATE AND THIOBENCARB CONCENTRATIONS DETECTED IN THE SACRAMENTO RIVER NEAR SACRAMENTO (CA) | HOLINATE | | | | • | , | | |--|------|------------------------|----------------|-------------------------------|---------------------------------|------------| | RIVER STATICH | YEAR | SURVEILLANCE
PERIOD | OBSERVATIONS D | CONCENTRATION
RANGE (ug/1) | DURATION OF
DETECTION (DATE) | ref erence | | Sectamento City Hater
Treatment Plant (Intake) | 1983 | 4/11 = 7/15 | 39 | <0.3 - 2.0 | 26 (6/8 - 7/4) | ь | | (.25 ml. d s American River) | 1982 | 5/19 - 7/12 | 16 | <1.5 - 13 | 33 (5/38 ~ 6/30) | • | | Raccamento City Water | | | | | | | | Treatment Plant (Tap Water) | 1983 | 6/10 - 6/30 | 5 | <.1 | Not detected | ь | | | 1982 | 6/2 - 7/12 | 13 - | <0.3 | Not detected | • | | Village Mirina | | | | | | | | f .25 mi, u/s American River) | 1983 | 4/27 - 7/11 | 173/ | <1.0 - 20.0 | 46 (5/11 - 6/27) | đ | | | 1982 | 5/6 - 1/14 | 163/ | <1.0 - 27 | 47 (5/21 - 7/7) | e | | Crawlad Landing
[.5 ml. u/s American River) | 1903 | 5/30 - 7/15 | 22 | <0.3 ~ 4.0 | 28 (6/6 - 7/4) | ь | | THEODERICARD | · | | | | | | | Sacramento City Water Treatment Plant (Intake) | 1983 | 4/11 - 7/15 | 40 | <0.1 - 0.38 | 13 (6/13 - 6/26) | ь | | 1.25 mt. d/s American River) | 1982 | 6/9 - 7/12 | 10 | <1.5 - 2.1 | 12 (6/9 - 6/21) | • | | Sacramento City Water
Treatment Plant (Tap Water) | 1983 | 6/10 - 6/30 | \$ | <0.10 | Not detected | ь | | ireacment trant (tab water) | 1982 | 6/2 - 7/12 | to | <0.1 | Not detected | • | | /lllage Mortna
 1.25 ml, u/a American River) | 1983 | 4/27 - 7/11 | 174/ | <1.0 | Not detected | đ | | o/a /weetican River) | 1982 | 5/6 - 1/14 | 16 3 | <1.0 - 6.0 | 25 (5/28 - 6/22) | æ | | Crawlad Landing
(.5 ml. u/s American River) | 1983 | 5/30 - 7/15 | 22 | <0.1 - 0.45 | 29 (6/6 - 7/5) | b | ^{1/} Surface grab sample collected midchannel (by boat (8) or from shore (8). ^{2/} a= Sacramento City, 1982 b= Sacramento City, 1983 c= Finlayson and Lew, 1983a d= Finlayson and Lew, 1983b ^{1/} Split replicates to be analyzed by Stauffer Chemical Company. ^{1/} Split replicates to be analyzed by Chevron Chemical Company. # THIOBEICARB CONCENTATIONS FROM WATER SAMPLES COLLECTED AT 1982 MONITORING LOCATIONS | | | | - Ac | nitoring | Loca | Elons | | | | | |---------|------|------|-----------|----------|------|-------|---------------|------|-------|---| | Date | RS1 | CBD1 | RD108 | CBD5 | BS1 | SBP1 | FR1 | HD1 | SR1 | | | Hay 6 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1· | <1 | | | liay 11 | <1 | <1 | (1 | <1 | <1 | <1 | <1 | . <1 | <1 | | | Hay 21 | 3 | 17 | 14 | 5 | <1 | <1 | <1 | <1 | <1 | • | | May 25 | 7 | 13 | 35 | 170 | 1 | <1 | <1 | 2 | <1 | | | Hay 28 | - 16 | 40 | 29 | 25 | <1 | 2 | <1 | 21 | · 1 | | | June 1 | 18 | 57 | 83 | 33 | 7 | 7 | <1 | 53 | 3 | | | June 4 | 48 | 50 . | 110 | 35 | 10 | 7 | 6. | 45 | 5 | | | June B | 27 | 29 i | 5 | 10 | .6 | 14 | <1 | 66 | 6 | | | June 11 | 11 | 30 | 41 | 11 | . 5 | 9 | <1 | 99 | 5 | | | June 15 | 2.1 | 9 | 30 | ', 6 | 4 | 39 | : <1 | . 94 | 4 | | | June 18 | 12 | 13 | 3 | 65 | 5 | 5 | <1 | 68 | <1 | | | June 22 | 3 | 3 | 4 | 1 | 6 | 2 | · <1 | 25 | 1 | | | June 25 | 2 | 3 | 3 | 3 | 9 | . 1 | <1 | 10 | <1 | | | June 30 | 2 | 2 | 3 ' | 2 | 2 | <1 | < 1 | 6 | <1 | | | July 7 | 1 | <1 | <1 | <1 | <1 | <1 | <1 | 5 | '; <1 | | | July 14 | (Ì | <1 | <1 | ₹İ | <1 | <1 | <1 | 2 | `<1 | | ^{*} ug/l, or ppb # STATE WATER RESOURCES CONTROL BOARD CENTRAL VALLEY REGIONAL WATER QUALITY CONTROL BOARD 1983 RICE CHEMICAL MONITORING ## Analysis Results by Site | Sacr
E | LOCATION | LABORATORY 1/ | CONCENTRATE MOLINATE | ION (ug/1) ^{2/}
THIOBENCARB | |-----------|--|---------------|----------------------|---| | | | | <0.2 | <0.2 | | | Sacramento River 0.5 mile upstream of
Reclamation District 108 drainage pumps | CAL
DFG | <1.0 | <1.0 | | | | CVF | <0.2 | ₹0.2 | | | Sacramento River 1 mile upstream of Knight's Landing | DFG | <1.0 | <1.0 | | | a setter downstroom of | CVP | 1.9 | 0.62 | | | Sacramento River 2 miles downstream of
Knight's Landing [*] | DFG | <1.0 | <1.0 | | | Sacramento River 2 miles downstream of | CAL | 5.4 | 0.65 | | | Feather River | DFG | 5.1 | <1.0 | | | ntura ak Interntate 880 Bridge | CVF | 4.0 | <0.2 | | | Sacramento River at Interstate 880 Bridge | DFG | <u>3.2</u> | <u> </u> | | :
5 | Sacramento River at Village Harina | CVL | 1.9 | <1.0 | | | | CVP | 2.1 | <1.0 | | 9 | Þ | CHEV | ~~ ~ | 0.0 | | 10 | | CAL , | 3.9 | 0.25 | | 13 | | CVF | 6.9 | 1.4 | | 15 | . | CVF | 4.3 | 0.39 | | 13 | | ant. | 3.8 | <0.2 | | 16 | | CAL
DFG | 2.7 | <1.0 | | /21 | | | 4.3 | 0.45 | | | | CVF | <1 | <1 | | 26 | Sacramento River at Freeport | H | · <1 | <1 | | | | . 11 | | $\frac{3}{n}$ | | | | н . | | 11 | | | | • | - | | | | , | • | | | | | | | 1.1 | <0.2 | | /17 | | CAL " | 1.23 | | | | | | 41.0 | <1.0 | | /26 | Sacramento River at Walnut Grove | CVF | <1.0
<1.0 | <1.0 | | ** | | CAL . | | 3/ | | | | 11 . | | , | | | | | • | | | | | CNL | 3.4 | 0.75 | | 6/17 | <i>*</i> | H H | 3.5 | 0.41 | | | | ₽∧D | ND | ND | ## STATE WATER RESOURCES CONTROL BOARD CENTRAL VALLEY REGIONAL WATER QUALITY CONTROL BOARD 1983 RICE CHEMICAL MONITORING (CONT'D) ## Analysis Results by Site | DATE | LOCATION | | LABORATORY 1/ | CONCENT | RATION (ug/1) ^{2/}
E THIOBENCARB | |-------------|--|--|---------------------------------|---------------------|--| | 5/26 | Sacramento River at Rio Vis
(Highway 12 bridge) | ta | CAL
" | <1
<1 | <1
<1
3/ | | ·/23 | Sacramento River near Rio V | ista (Bouy 36) | CAL
STCHEM
CHEV
DFG | 10
12

9.0 | <0.5
1.0
0.5
<1.0 | | C
D
R | AL = California Analytical HEV = Chevron Chemical Co., FG = California Department AD = Radian Corporation, Sa TCHEM = Stauffer Chemical Co., | Richmond
of Fish and Game
Cramento | | (EP) | ene <5 ug/l
N 624 Method
I for analysis. | | | etection Limits in ug/1: CAL CHEV DEG RAD STCHEH* STCHEM** | Molinate 0.5 1.0 1.0 0.1 | Thlobencarb 0.5 0.5 1.0 1.0 0.1 | | | ND = Not detected at the specified detection limit. ^{*} For samples taken from Cache Slough at Vallejo Pipeline intake. ^{**} All other sites. ## REPORTED FISH KILLS INVOLVING RICE FIELD WATER. (CALIFORNIA DEPARTMENT OF FISH AND GAME) | | | | CERTAINTY OF | CAUSE | Atthorne Cale | | |---|---------------------------------|----------------|--------------|-------------|------------------------------|---| | D CATTOU | DATE | KHOKEF | PRODABLE 1/ | POSSIBLE 1/ | APPROXIMATE
NUMBER | SPECIES | | brain entering Butte Creek | 5/15/65 | | | X | 1000
25 | Catflah
Catflah | | Midge cut and Column
Unathman Canal | 5/31/13 | | | , x | 1000
50
50
50 | Carp
Catfish
Crapple
Black basa | | lats fond near Fleasant
Grove | 6/4/75 | | x | | 1272
400
42 | Carp
Catilsh
Bluegili | | Coluga County near Gildley | 5/24/76 | | x . | | 1-50 | Catfish | | Dutte Greek and
its
fillustaries north of
Gridle, Column Her. | 6,18,76 | | | × | 1000+
500+
100+
100 | Catp
Catlish
Bass
Sunfieh | | Muthe Creek | 6/10/77 | | | x | 1000
50 | Carp
Catlinh | | Colura Marin Drain and
Regimention Stough | fote Hay-
Carly June
1900 | x
:/ | | | 30,000 | Carp (>75%) | | # December 1997 | late Mays
earlý June
1981 | x
1/ | | | 10,000 | Caep (>751) | | Colors Bario train and
Sitter Dypans | Ently
June/
1987 | X | | | 13,000 \$; | Carp
CatElsh | | Januson Lake, 15 mile
east of Larillin
(2007) Canal | 6/4/83 | | , x | | 1,000
500
200
250 | Carte
Catfish
Black Lass
Crapple | | Columa Basin twain | Barly
June/
1983 | × | | | 7,000 | Corp | ¹⁹⁶⁵⁻¹⁹⁸⁶ fish bill compositions; Pintayaon et al., 1982 and 1983a-b. Counce known to be Helinate trice herbicide) from gas chromatographic (thermionic specific) analysis of the TIPEug and water. 1 Frobably caused by rice field water but specific compound not identified or proven by laboratory analysis. ⁴⁷ loselbl, caused by rice field water but no actual determination. trium linlayson, personal communication. ## APPENDIX 2 SUMMARY OF TSMP DATA 1978 - 1987 ORGANIC CHEMICAL MONITORING WITHIN THE NORTHERN DISTRICT (SWRCB, 1984b, 1985, 1986a, 1987) Note: 1986 summary data does not contain monitoring for pentachloraphenol(PCP) or tetrachloraphenol(TCP). 1987 summary data does not contain monitoring for TCP. 1978 ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATION | SIATIO | N NAME | | | MIMON | | TISSUE
TYPE | SAMPLE
DATE | | ATRAZINE | BENEF | IN | CARB | ARYL | CARN
PHEN
THIC | Ю | CDEC | CHLO'
BENS | | | |---|---|---|---|---|--|--|--|--|--|--|--|---|--|---|--|-------------|---|---------------|---|----| | 105.11.08 | KLAHATH | R / KLAM | GLEN | FR | ESHVATER | MUSSEL | WHOLE | 78-07-2 | 5 -5 | N | .5 | | | 00 | | | - 15 | ٠١ | | | | 105.11.08 | KI. AMA TIF | R / KLAM | GLEN | 5t | CKER | | FLESH | 78-07-2 | 5 -5 | N | -5 | | | 00 | | • • | · 15 | • 1 | | | | 105.11.08 | | | | SC | ULPIN | | | 78-07-2 | | H | .5 | | | 00 | | | - 15 | ٠ ١ | | | | 106.12.03 | | | | | CKER | | | 78 - 07 - 2 | | н | -5 | | | 00 | | | - 15 | -1 | | | | 106.12.03 | TRINLTY | R / WILL | OW CK | SC | ULPIN | | FLESH | 78-07-2 | | N | - 5 | | | 00 | | | • 15 | • ! | - | | | 111.12.01 | | | | FR | ESIIVATER | MUSSEL | MIOLE | 78-07-2 | | H | - 5 | | | 00 | - | 20 | ·15 | • 1 | - | | | 111.12.01 | | | | 51 | CRAMENTO | SUCKER | FLESH | 78-07-2 | | H | - 5 | | | 00 | | | - 15 | • ! | | | | 111.12.01 | | | | SC | ULPIN | | FLESII | 78-07-2 | 4 -5 | N | - 5 | | | 500 | | | - 15 | -1 | | | | 526.22.00 | | | | C | ODISFLY | LARVAE | WHOLE | 78-08-2 | | H | -5 | | | 500 | | | - 15 | • ! | - | | | 26.22.00 | HCCL OUD | R/SHASTA | LAKE | | CRAMENTO | | | | | N | -5 | | | 500 | | | - 15 | • 1 | | | | 526.22.00 | HCCLOUD | R/SHASTA | LAKE | BI | ROWN TROU | T | FLESH | 78-08-2 | 21 -5 | H | .5 | | | 500 | • ; | 20 | - 15 | • | | | | STATION (| ALPHA
CHLORDEI | CIS
NE CHLORD | | AMMA
ORDEN | TRANS
E CHLORD | | | RONEB CII | LOR DĄ
RIFOS | CTHAL D-D | 000 t | 000
P,P | DDE
O,P | DDE
P,P | DDMS
P,P | DDMU
P,P | 0.P | 001
P,P | TOTAL
TOD | | | 05.11.08 | N | - 5 | | N | -5 | D | | 50 | - 10 | -5 N | - 10 | 5 | -10 | 5 | - 5 | | - 10 | | 10 | | | 05.11.08 | Ħ | ٠5 | | H | -5 | Đ | | 50 | -10 | -5 N | | | - 10 | -5 | -5 | - | - 10 | | Ď | | | 05.11.08 | 14 | -5 | | И | -5 | D | | | - 10 | -5 N | | | -10 | ٠5 | -5 | | - 10 | | D | | | 06.12.03 | H | .5 | | Ħ | ٠5 | D | | | - 10 | -5 N | - 10 | | -10 | - 5 | -5 | | - 10 | | D | | | 06.12.03 | N | -5 | | N | -5 | D | | | -10 | -5 N | -10 | | - 10 | -5 | ٠5 | . 5 | | | D | | | 11.12.01 | N | .5 | | R | .5 | D | | 50 . | · 10 | -5 N | -10 | - | -10 | • 5 | - 5 | - | • 10 | - | 0 | | | 11.12.01 | H | -5 | | N | .5 | D | | 50 | - 10 | -5 N | - 10 | - | - 10 | -5 | -5 | _ | -10 | | D | | | 11.12.01 | N | -5 | | N | • • • • • • | D | - | 50 | - 10 | ·5 N | - 10 | | - 10 | I | -5 | - | -10 | | .Z | | | 26.22.00 | N | -5 | | H | -5 | Ð | | 50 | - 10 | -5 N | - 10 | | -10 | -5 | ٠5 | | - 10 | | D | | | 26.22.00 | N | -5 | | N | ٠5 | D | - | 50 | - 10 | ·5 N | - 10 | - | - 10 | -5 | -5 | | - 10 | | Đ | | | 26.22.00 | N | -5 | | N | -5 | D | | 50 | - 10 | -5 N | - 10 | . 1 | -10 | -5 | -5 | .1 | - 10 | 1 -5 | Ð | | | | DEE DIA | ZINON DIC | in o ii | nicoto | N DIELOP | | | | | | | | | D 1 M | ETUIN | | 11100 | | HIDN | | | STATION | | | THION | | DI DIELDR | IN DIPHI | NAMID | ENDO | ENDO | ENDO
11 SULFAI
SULFAI | TOT. | AL
O | END | | ETHIO | N FEI | ION | FEN | | | | STATION
105.11.08 | и . | 125 · | THION | -100 | ·5 | | NAMID
500 | EHDO
SULFAN 1 | ENDO
SULFAN | ENDO
11 SULFAI
SULFAI | TOT. | AL
O
FAN | ENDI | 5 , | -60 | N FEI | · 12 | FEN | | | | \$1ATION
105.11.08
105.11.08 | н . | 125 -
125 - | 10
10 | -100
-100 | -5
-5 | •(| NAMID | EHDO
SULFAN 1 | ENDO
SULFAN
N
N | ENDO
II SULFAI
SULFAI
N | TOT. I END IE SUL D | AL
O
FAN | - 1: | 5 , 5 | -60
-60 | N FEI | 10N
- 12
- 12 |) FEN | 1 | | | STATION
105.11.08
105.11.08
105.11.08 | H . | 125 -
125 -
125 - | 10
10
10 | -100
-100
-100 | -5
-5
-5 | - (
- (| 000
000
000 | ENDO
SULFAN 1 | ENDO
SULFAN
N
N | ENDO
11 SULFAI
SULFAI | TOT. I END. IE SUL. D | AL
O
FAN | - 1:
- 1:
- 1: | 5
5
5 | -60
-60
-60 | N FEI | 10N
- 12
- 12
- 12 | FEN | 1
1 | | | \$1ATTON
105.11.08
105.11.08
105.11.08
106.12.03 | й -
й -
й - | 125 -
125 -
125 -
125 - | 10
10
10
10 | -100
-100
-100
-100 | -5
-5
-5 | - (
- (
- (| NAMID
500
500
500 | ENDO
SULFAN 1 | ENDO
SULFAN
N
N
N | ENDO
II SULFAI
SULFAI
N
N
N | TOT. I END. IE SUL. D D D | AL
O
FAN | -15
-15
-15
-15 | 5 , [′]
5
5 | -60
-60
-60 | N FEI | 10N
- 12
- 12
- 12
- 12 | FEN | 1
1
1 | | | \$1ATION
 05.11.08
 05.11.08
 05.11.08
 06.12.03
 06.12.03 | N - R - N - N - N - N - N - N - N - N - | 125 -
125 -
125 -
125 -
125 - | 10
10
10
10
10 | -100
-100
-100
-100
-100 | -5
-5
-5
-5 | - (
- (
- (
- (| NAMID
500
500
500
500 | -5
-5
-5
-5
-5 | ENDO
SULFAN
N
N
N
N | ENDO
ET SULFAT
SULFAT
N
N
N | TOT. I END.
IE SUL. D D D | AL
O
FAN | - 1:
- 1:
- 1:
- 1: | 5 /
5
5
5
5 | -60
-60
-60
-60 | N FEI | 10H
- 12
- 12
- 12
- 12 | FEN | 1
1
1
1 | | | \$1ATION
 05.11.08
 05.11.08
 05.11.08
 06.12.03
 06.12.03
 11.12.01 | И -
И -
И -
И -
И - | 125 - | 10
10
10
10
10
10 | -100
-100
-100
-100
-100 | -5
-5
-5
-5
-5 | -4
-4
-4
-1
-1 | NAMID
500
500
500
500
500 | -5
-5
-5
-5
-5
-5 | ENDO
SULFAN
N
N
N
N | ENDO
ET SULFAI
SULFAI
N
N
N
N | TOT. I END. IE SUL. D D D D D | AL
O
FAN | - 15
- 15
- 15
- 15
- 15
- 17
- 17 | 5 /
5
5
5
5 | -60
-60
-60
-60
-60 | N FE! | 10H
- 12
- 12
- 12
- 12
- 12 | FEN | 1 | | | \$1ATION
 05.11.08
 05.11.08
 105.11.08
 106.12.03
 106.12.03
 111.12.01 | N - H - H - H - H - H - H - H - H | 125 - | 10
10
10
10
10
10
10 | -100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5 | -4
-4
-1
-1
-1 | NAMID
500
500
500
500
500
500 | -5
-5
-5
-5
-5
-5 | ENDO
SULFAN
N
N
N
N
N
N | ENDO
11 SULFAI
SULFAI
N
N
N
N
N | TOT. 4 END 1E SUL D D D D D D D D D | AL
O
FAN | - 15
- 15
- 15
- 15
- 16
- 17
- 17
- 17 | 5 /
5 5
5 5
5 5 | -60
-60
-60
-60
-60 | N FE! | 10H
- 12
- 12
- 12
- 12
- 12
- 12
- 12 | FEN | 1
1
1
1
1
1 | | | STATION 105.11.08 105.11.08 105.11.08 106.12.03 111.12.01 111.12.01 | N - N - N - N - N - N - | 125 - | 10
10
10
10
10
10
10
10 | -100
-100
-100
-100
-100
-100
-100
-100 | ·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5 | | 500
500
500
500
500
500
500
500 | -5
-5
-5
-5
-5
-5
-5 | ENDO
SULFAN
N
N
N
N
N
N
N | ENDO
11 SULFAI
SULFAI
N
N
N
N
N
N | TOT. I END IE SUL D D D D D D D D D D D D | AL
O
FAN | -11: -11: -1: -1: -1: -1: -1: -1: | 5 /
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60 | N FEI | 12
- 12
- 12
- 12
- 12
- 12
- 12
- 12 |) FEN | 1
1
1
1
1
1 | | | 05.11.08
05.11.08
05.11.08
105.11.08
106.12.03
106.12.03
111.12.01
111.12.01
111.12.01 | N - N - N - N - N - N - N - N - N - N - | 125 -
125 - | FO 10 10 10 10 10 10 10 10 10 10 10 10 10 | -100
-100
-100
-100
-100
-100
-100
-100 | ·5·5·5·5·5·5·5·5·5·5·5 | | 500
500
500
500
500
500
500
500
500 | -5
-5
-5
-5
-5
-5
-5
-5 | ENDO
SULFAN
N
N
N
N
N
N
N | ENDO
II SULFAI
SULFAI
N
N
N
N
N
N
N | TOT. I END IE SUL D D D D D D D | AL
O
FAN | -15
-15
-15
-16
-17
-17
-17
-17 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60 | N FEI | 10N
- 12
- 12
- 12
- 12
- 12
- 12
- 12
- 12 |) FEN | 1
1
4
4
4 | | | \$1ATTON
105.11.08
105.11.08
105.11.08
106.12.03
106.12.03
111.12.01
111.12.01
111.12.01
526.22.00 | H - H - H - H - H - H - H - H - H - H - | 125 - | 10
10
10
10
10
10
10
10 | -100
-100
-100
-100
-100
-100
-100
-100 | ·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5·5 | | 500
500
500
500
500
500
500
500 | -5
-5
-5
-5
-5
-5
-5 | ENDO
SULFAN
N
N
N
N
N
N
N | ENDO
11 SULFAI
SULFAI
N
N
N
N
N
N | TOT. FE SUL D D D D D D D D D D | AL
O
FAN | -11: -11: -1: -1: -1: -1: -1: -1: | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60 | N FEI | 12
- 12
- 12
- 12
- 12
- 12
- 12
- 12 | FEN | 1
1
1
1
1
1 | | | | H - H - H - H - H - H - H - H - H - H - | 125 - | 10
10
10
10
10
10
10
10
10
10
10
10 | -100
-100
-100
-100
-100
-100
-100
-100 | · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 | -(4
-(4
-(4
-(4
-(4
-(4
-(4
-(4
-(4
-(4 | 500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO
SULFAN
H
N
N
H
N
H
N | ENDO
E SULFA
SULFA
N
N
N
N
N
N
N
N
N
N | TOTAL ENDITE SUL. DD | AL O FAN D D D D | -1:
-1:
-1:
-1:
-1:
-1:
-1:
-1: | 5 / 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60 | N FEI | 12
-12
-12
-12
-12
-12
-12
-12
-12
-12 | FEN | 4
4
4
4
4
4
4 | EN | | 05.11.08
05.11.08
05.11.08
05.11.08
06.12.03
106.12.03
111.12.01
111.12.01
111.12.01
526.22.00
526.22.00
STATION | H - H - H - H - H - H - H - H - H - H - | 125 - | 10
10
10
10
10
10
10
10
10
10
10
10 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5 | | 500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N N N N CHEXA | ENDO
E SULFA
SULFA
N
N
N
N
N
N
N
N
N
N | TOTAL | AL O FAN D D D D | -1! -1! -1! -1! -1: -1: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 | 5 / 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | N FEI |
12
-12
-12
-12
-12
-12
-12
-12
-12
-12 | FEN | 1 | EN | | 05.11.08
05.11.08
05.11.08
05.11.08
06.12.03
06.12.03
11.12.01
11.12.01
11.12.01
526.22.00
526.22.00
51ATION | N - N - N - N - N - N - N - N - N - N - | 125 - | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | - 100
- 100
- 100
- 100
- 100
- 100
- 100
- 100
- 100
- 100
HCH
BETA | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7 | - (
- (
- (
- (
- (
- (
- (
- (
- (
- (| 500
500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N N CHLORO | ENDO
ET SULFAI
SULFAI
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOT. I END TE SUL D D D D D D D D D D D D D | AL O FAN D D D D D D D | -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | TH TH | 10N
12
12
12
12
12
12
12
12
12
12
12 | FEN | I trof | EN | | 05.11.08
05.11.08
05.11.08
105.11.08
106.12.03
11.12.01
11.12.01
11.12.01
526.22.00
526.22.00
\$1ATION | N - N - N - N - N - N - N - N - N - N - | 125 - | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
- | | 000
000
000
000
000
000
000
000
000
00 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SUL FAN N N N N N N N N CHLORO GENZENE | ENDO
EI SULFAI
SULFAI
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOTAL | AL O FAN D D D D D D D D D D D D D D D D D D D | -100 -100 -100 -100 -100 -100 -100 -100 | 5 / 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | TH TH | 12
-12
-12
-12
-12
-12
-12
-12
-12
-12
- | FEN | 1
1
1
1
1
1
1
1
1
1
1
1
1 | EN | | 05.11.08
05.11.08
05.11.08
05.11.08
06.12.03
11.12.01
111.12.01
111.12.01
526.22.00
526.22.00
SIATION
105.11.08
105.11.08
105.11.08 | N - N - N - N - N - N - N - N - N - N - | 125 - | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2 | | 500
500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N N CHLORO BENZENE | ENDO
EI SULFAI
SULFAI
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOTAL | AL O FAN D D D D D D D D D D D D D D D D D D D | -1! -1! -1! -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 | 5 7
5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | TH TH | 12
-12
-12
-12
-12
-12
-12
-12
-12
-12
- | FEN | -20
-20 | EN | | 05.11.08
05.11.08
05.11.08
06.12.03
106.12.03
111.12.01
111.12.01
111.12.01
111.12.00
526.22.00
526.22.00
51ATION
105.11.08
105.11.08
105.11.08
106.12.03 | N - N - N - N - N - N - N - N - N - N - | 125 -
125 - | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2
-2
-2 | | 000
000
000
000
000
000
000
000
000
00 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N H CHLORO BENZENE | ENDO
II SULFAI
SULFAI
N
N
N
N
N
N
N
M
MALATHIC | TOT 4 END D D D D D D D D D D D D D D D D D D | AL O FAN D D D D D D D D D D D D D D D D D D D | -11: -1: -1: -1: -1: -1: -1: -1: -1: -1: | 5 / 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | N FEI TH | 12
-12
-12
-12
-12
-12
-12
-12
-12
-12
- | FEN | -20
-20 | EN | | 05.11.08
05.11.08
05.11.08
05.11.08
06.12.03
11.12.01
11.12.01
11.12.01
11.12.01
11.12.01
11.12.01
11.12.01
11.12.01
11.12.01
11.12.01
105.22.00
STATION
105.11.08
105.11.08
105.11.08
106.12.03
111.12.01 | N - N - N - N - N - N - N - N - N - N - | 125 - | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2
-2
-2
-2
-2 | | 500
500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SUL FAN N N N N N N N N N H EXA CHLORO BENZENE - 2 - 2 - 2 | ENDO
ET SULFA:
SULFA:
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOT 4 END D D D D D D D D D D D D D D D D D D | AL OF AN DD DD HIS HIGH | -1! -1! -1! -1! -1! -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | N FEI TH | 12
-12
-12
-12
-12
-12
-12
-12
-12
-12
- | FEN | -20
-20
-20 | EN | | 05.11.08
05.11.08
05.11.08
105.11.08
106.12.03
11.12.01
111.12.01
111.12.01
126.22.00
1105.11.08
105.11.08
105.11.08
105.11.08 | N - N - N - N - N - N - N - N - N - N - | 125 - | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2
-2
-2 | | 500
500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SUL FAN N N N N N N N N N N CHLORO BENZENE - 2 - 2 - 2 - 2 | ENDO
E SULFA
SULFA
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOT 4 END D D D D D D D D D D D D D D D D D D | AL DDD HINNH | -111-11-11-11-11-11-11-11-11-11-11-11-1 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | TH TH | 10N
- 12
- 12
- 12
- 12
- 12
- 12
- 12
- 12 | FEN | - 20
- 20
- 20 | EN | | 05.11.08
05.11.08
05.11.08
105.11.08
106.12.03
11.12.01
11.12.01
11.12.01
526.22.00
526.22.00
\$1ATION | N - N - N - N - N - N - N - N - N - N - | 125 -
125 - | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2
-2
-2
-2
-2 | 11EP1 | 300
300
300
300
300
300
300
300
300
300 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N N N CHLORO BENZENE -2 -2 -2 -2 -2 | ENDO
E SULFA
SULFA
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOT TOTAL | AL OF FAN DDD HION HINN HINN HINN HINN HINN HINN HINN | -11: 11: 11: 11: 11: 11: 11: 11: 11: 11: | 55555555555555555555555555555555555555 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | H FEI TH | 10N
- 12
- 12
- 12
- 12
- 12
- 12
- 12
- 12 | FEN | -20
-20
-20
-20
-20 | EN | | 05.11.08
05.11.08
05.11.08
105.11.08
106.12.03
11.12.01
111.12.01
111.12.01
126.22.00
1105.11.08
105.11.08
105.11.08
105.11.08 | N - N - N - N - N - N - N - N - N - N - | 125 - | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2 | | 000
000
000
000
000
000
000
000
000
00 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N HEXA CHLORO BENZENE -2 -2 -2 -2 -2 | ENDO
ET SULFA:
SULFA:
N
N
N
N
N
MALATHIC | TOT TOTAL | AL DE DE HION | -11: -11: -11: -11: -11: -11: -11: -11: | 55555555555555555555555555555555555555 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | TH TH | 10N
-12
-12
-12
-12
-12
-12
-12
-12
-12
-12 | FEN | -20
-20
-20
-20
-20 | EN | | 05.11.08
05.11.08
05.11.08
05.11.08
06.12.03
11.12.01
11.12.01
11.12.01
126.22.00
526.22.00
SIATION
105.11.08
105.11.08
106.12.03
106.12.03
111.12.01 | N - N - N - N - N - N - N - N - N - N - | 125 - | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | -100
-100
-100
-100
-100
-100
-100
-100 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2 | | 500
500
500
500
500
500
500
500
500
500 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | ENDO SULFAN N N N N N N N N N HEXA CHLORO BENZENE -2 -2 -2 -2 -2 -2 | ENDO
ET SULFAI
SULFAI
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | TOT TOTAL | AL DDD HIGH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH | -11:-11:-11:-11:-11:-11:-11:-11:-11:-11 | 55555555555555555555555555555555555555 | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | TH TH | 10N
-12
-12
-12
-12
-12
-12
-12
-12
-12
-12 | FEN | -20
-20
-20
-20
-20
-20 | EN | W = not analyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). 1978 (continued) | STATION | CIS
NONACHLOR | TRANS
NONACHLOR | | ORGANO
ARSENICAL | OXYCI
.s | ILORDANE | PARATHION
ETHYL | PARATHION
METHYL | PC8
1242 | PCB
1248 | PC8
1254 | PC8
1260 | TOTAL
PCB | PCNB | PENIA
CHLOROPI | HENOL | |-----------|------------------|--------------------|-------|---------------------|-------------|----------|--------------------|---------------------|-------------|-------------|-------------|-------------|--------------|------|-------------------|-------------------------| | 05.11.08 | N | -5 | N | N | | -5 | -25 | -25 | N | N | H | N | H | -5 | H | | | 05.11.08 | Ň | ٠5 | N | Ä | | - 5 | - 25 | - 25 | N | Ħ | Ħ | H | H | -5 | N | | | 05.11.08 | N | ٠,5 | n | Ĥ | | -5 | - 25 | -25 | N | Ħ | N | H | M | - 5 | H | | | 06.12.03 | N | -5 | H | ĸ | | .5 | - 25 | - 25 | Ħ | N | N | H | K | .5 | W | | | 06.12.03 | H | -5 | N | N | | -5 | - 25 | - 25 | H | Ħ | H | H | N | -5 | N | | | 11.12.01 | N | -5 | N | N | | -5 | · 25 | - 25 | N | N | H | W | N | -5 | W | • | | 11.12.01 | H | ٠š. | ĸ | N | | .5 | - 25 | - 25 | . M | H | H | M | N | -5 | N | | | 11.12.01 | Ñ | -5 | Ň | N | | .5 | - 25 | - 25 | N | H | Ħ | N | N | ٠5 | N | | | 26.22.00 |
N | -5 | | • | | -5 | -25 | -25 | N | Ħ | N | N | Ħ | -5 | N | | | 26.22.00 | | - | N | W | | | | - 25 | Ñ | H | H | N | N | -5 | Ħ | | | | N | -5 | N | N | | -5 | - 25 | | Ä | N | N | N | N | -5 | M | | | 26.22.00 | N | -5 | N | N | | •5 | -
25 | -25 | . " | - | " | | | | | | | STATION | PERTHANE | PHENKAPT | ON PH | IORATE PR | DNAMIDE | RONNEL | SIMAZINE | STROBANI | tct | E 161 | RAD I F | ON | TOXAPHE | NE | | CS >5PPB
ETHYL ETHER | | 05.11.08 | -500 | -50 | | 100 | N | -5 | N N | - 200 | H | | -50 | | -400 | | | N . | | 05.11.08 | -500 | -50 | | 100 | N | -5 | N | -200 | H | | -50 | | -400 | | 1 | N | | 05.11.08 | -500 | .50 | | 100 | N | . 5 | N | -200 | N | | -50 | | -400 | | 1 | M | | 06.12.03 | -500 | -50 | | 100 | N | . 5 | N | - 500 | N | | -50 | | -400 | | ı | N | | 06.12.03 | -500 | .50 | | 100 | N | - 5 | N | - 200 | N | | -50 | | -400 | | 1 | N | | 11.12.01 | -500 | -50 | | 100 | N | - 5 | Ħ | - 200 | H | | -50 | | -400 | | 1 | H | | 11.12.01 | -500 | .50 | | 100 | N | -5 | N | -200 | N | | -50 | | -400 | | | Ħ | | 11.12.01 | -500 | -50 | | 100 | N | -5 | N . | - 200 | N | | -50 | | ~ 400 | | 1 | H | | 526.22.00 | - 500 | -50 | | - 100 | H | .5 | H | - 200 | N | | -50 | | -400 | | 40 | H | | 26.22.00 | | ·50 | | - 100 | N | - 5 | N | - 200 | N | | -50 | | -400 | | | N | | 526.22.00 | | -50 | | - 100 | W | -5 | N | - 200 | · N | | -50 | | -400 | | | H | | | # 11 | AKS >5PPB | F | # PEAKS >5 | DDR 2 | 2,4.0 | 2,4·D | 2.4 | - D | | 2. | 4 · D | | | TETRA | DICHLORO | | STATION | | ETHYL | : | a 15% ETHY
ETHER | | | ISOBUTYL E | | | ESTER | | | PYL ESI | ER | CHLORO
PHENOL | BENZO
PHENONE P, | | 105.11.08 | | N | | N | | N | -25 | 0 | | 200 | | | ·50 | | N | N | | 105.11.08 | | Ň | | Ü | | Ħ | - 25 | 0 | ٠. | 200 | | | •50 | | N | N | | 105.11.08 | | N | | AP . | | Ä | - 25 | | •; | 200 | | | -50 | | H | N | | 106.12.03 | | n | ı | , , | | N | . 25 | | | 200 | | | -50 | | N | H | | 106.12.03 | | ii | | ü | | N | - 25 | | | 200 | | | -50 | | H | N | | 111.12.01 | | ii | | ü | | Ñ | · 25 | | - 3 | 200 | | | -50 | | N | N | | 111.12.0 | | ű | | w | | Ñ | - 25 | | | 200 | | | -50 | | Ħ | H | | 111.12.0 | | u | | 10 | | N | - 25 | | | 200 | | | -50 | | N | N | | 526.22.0 | | 11 | | Ü | | N | -25 | | | 200 | | | -50 | | N | N | | 526.22.0 | | •• | | N | | N | - 25 | | _ | 200 | | | -50 | | N | И | | 340.24.U | , | И | | N | | 74 | - 25 | | | 200 | | | -50 | | N | N | N = not analyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). 1979 ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATION | STATIC | ON HAME | | | COMMON
NAME | | TISSUE
TYPE | SAMPLI
DATE | E | IN ATE | RAZINI | E BE | NEFIN | CARB/ | P | ARBO
HENO
HIONI | | C CH
BE | LOR
NSIDE | |--|--|---|--|---|--|--|---|---|--|---------|---|--------------------------|---|---|---|--|--|---------------------------------|--| | 105.11.08 | KLAHATI | 1 R / KL | AM GLEN | | FRESHWATE | R MUSSEL | | | | | H | | -5 | N | | - 20 | - 15 | | - 10 | | 105.11.08 | | | | | SCULPIN | | | 79-08- | | | N | | .5 | N | | -50 | - 15 | | -10 | | 106.12.03 | | | | | | R MUSSEL | | | | | N | | ٠5 | N | | - 50 | - 15 | | -10 | | 106.12.03 | TRINETY | R / W | ILLOW CK | | RAINBOW 1 | | | 79-08- | | | N | | - 5 | N | | - 20 | - 15 | | - 10 | | 111.12.01 | EEL R / | SCOT 1/ | ١ | | FRESHWATE | R HUSSEL | MHOFE | 79-08- | 27 -5 | | H | | -5 | H | | - 20 | - 13 | | -10 | | 11.12.01 | EEL R / | SCOTIA | ١ | | SCULPIN | | FLESH | 79-08- | 27 -5 | | N | | • 5 | M | | .50 | - 15 | 5 | - 10 | | 526.22.00 | MCCLOU | R/SHAS | STA LAKE | | BROWN TRO | UT | FLESR | 79-08- | 23 -5 | | H | | -5 | H | | - 20 | -13 | 5 | - 10 | | STATION | ALPHA | | CIS
DROANE C | GAMMA | TRANS | TOTAL | CHLORO | | OR DAI | CTHAL | D-D | DDD
0,P | DDD 0 | DE DO | E DOM | S DDMI | J DD1
0,P | 001
P,P | 101AL
DD1 | | | | | | | .5 | D | -50 | | 10 | · 10 | N | -5 | -5 | . 5 - | 5 -5 | -5 | - 5 | -5 | D | | 05.11.08
05.11.08 | H | | ·5
·5 | N | .5 | 0 | -50 | | | - 10 | N | -5 | | | 5 -5 | - 5 | -5 | -5 | Ð | | 06.12.03 | N
N | | · 5 | N | .5 | Ð | -50 | | , - | -10 . | N | -5 | | | 5 -5 | - 5 | -5 | - 5 | D | | 06.12.03 | N
H | | · 5 | N
19 | .5
.5 | บ
D | -50 | | | -10 | N | ٠ś | | | 5 -5 | | - 5 | -5 | D | | | | | | • | -5 | b | -50 | | | - 10 | Ň | . 5 | | | 5 -5 | | -5 | -5 | Ð | | 111.12.01 | H | | .5 | H | | - | | | | -10 | × | -5 | - | - | 5 -5 | - | 5 | . 5 | D | | 111.12.01 | N | | ·5 | N | -5 | D | -50 | | | | | - | - | - | | - | _ | . 5 | | | 26,22.00 | Ħ | | -5 | N | -5 | D | -50 | - | 10 | - 10 | N | -5 | ., | | - | , ., | -, | | | | STATION | DEF DI | AZINON | D I CHLO | | OL DIELDR | IN DIPHEN | AMID EN | IDÓ
ILFAN E | ENDO
SULFAN | 11 5 | NDO
ULFAN
ULFAT | EN | 00 | ENDRII | I ETHI | | HITRON | O FEN | ITHEON | | 105.11.08 | | - 125 | - 10 | - 100 | | N | | -10 | N. | | N
N | | D
D | - 15
- 15 | -60
-60 | | - 12
- 12 | | N
N | | 105.11.08 | N | - 125 | | | -5 | N | | | | | | | | | | | | | | | 103.11.00 | • •• | . 153 | - 10 | - 100 | | N | | - 10 | N. | | ••• | | - | | | - | | | | | | | -125 | - 10
- 10 | - 100 | - | N | | - 10
- 10 | N | | N | | D | -,15 | -60 | D | -12 | | N | | 106.12.03 | H | | | | · ·5 | | | | ,, | | ••• | | - | -,15
-15 | -61
-61 | 0 | - 12
- 12 | | N
N | | 106.12.03
106.12.03 | H
N | - 125
- 125 | - 10
- 10 | - 100
- 100 | .5 | H | | - 10 | ,, | | N | | D | -,15 | -60 | 0 | -12 | | H
H | | 106.12.03
106.12.03
111.12.01 | N
N | - 125
- 125
- 125 | - 10
- 10
- 10 | - 100
- 100
- 100 | ·5
·5
· ·5 | H
N
N | | -10
-10
-10 | N | | N
N | | D
D | -,15
-15 | -61
-61 | 0
0
0 | - 12
- 12 | | N
N
N | | 106.12.03
106.12.03
111.12.01 | N
N
N | - 125
- 125 | - 10
- 10 | - 100
- 100 | · · · · · · · · · · · · · · · · · · · | N
N | | - 10
- 10 | N | | N
N | | D
D
D | -15
-15
-15 | -61
-61 | 0
0
0 | - 12
- 12
- 12 | | H
H | | 106.12.03
106.12.03
111.12.01
111.12.01 | H
H
H
C H | - 125
- 125
- 125
- 125 | - 10
- 10
- 10
- 10
- 10 | - 100
- 100
- 100
- 100
- 100
HCH | · · · · · · · · · · · · · · · · · · · | H
N
N
N
N | | -10
-10
-10
-10
-10
-10 | N
N
N | | N
N | I MET | D
D
D
D | - 15
- 15
- 15
- 15 | -61
-61
-61
-6- | 0
0
0
0 | -12
-12
-12
-12
-12 | | N
N
N | |
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00 | N
N
N
O N
FONOFO | -125
-125
-125
-125
-125 | -10
-10
-10
-10
-10
-10
EON HCH
ALPH/ | - 100
- 100
- 100
- 100
- 100
HCH | 1 -5
1 -5
1 -5
1 -5
1 -5 | H
N
N
N
HEPTAC | EI | -10
-10
-10
-10
-10
-10 | N
N
N
N
N
HEXA
CHLORD | | N
N
N
N | I MET | D
D
D
D | -15
-15
-15
-15
-15
-15
METH
OXYCH | -61
-61
-61
-61
-61
-6 | 0
0
0
0
0
1REX | - 12
- 12
- 12
- 12
- 12
MOLIN | IATE I | N
N
N
N
H
H
HITROFEN | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION | H
N
N
N
O H
FONOFO | - 125
- 125
- 125
- 125
- 125
- 125
- 125 | -10
-10
-10
-10
-10
-10
ALPH/ | -100
-100
-100
-100
-100
HCH
A BETA | -5
-5
-5
-5
-5
-5
-5
HCH HCH
DELTA GAM | N N N N N N N N N N N N N N N N N N N | EI
EI | -10
-10
-10
-10
-10
-10
EPTA
HLOR
POXIDE | N
N
N
N
HEXA
CHLORO
BENZENE | | N
N
N
N
THION | I MET | D
D
D
D
HION
N | -15
-15
-15
-15
-15
-15
METH
OXYCH | -61
-61
-61
-61
-61
-6 | 0
0
0
0
1REX | - 12
- 12
- 12
- 12
- 12
MOLIN | | N
N
N
N
H
N1 TROFEN | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08 | H N N N N N N N N N N N N N N N N N N N | - 125
- 125
- 125
- 125
- 125
- 125
IS GUTHE | -10
-10
-10
-10
-10
-10
-10
EDN HCH
ALPH/ | -100
-100
-100
-100
-100
HCH
A BETA | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | HEPTAC | EI
EI
; | -10
-10
-10
-10
-10
-10
EPTA
HLOR
POXIDE | HEXA
CHLORO
BENZENE | | N
N
N
N
THION | I MET | D D D D D D D D D D D D D D D D D D D | -15
-15
-15
-15
-15
-15
METH
OXYCH | -61
-61
-61
-66
-6
-6 | 0
0
0
0
1REX | - 12
- 12
- 12
- 12
- 12
- 12
- 12
- 14
- 18
- 18
- 18 | | N
N
N
N
H
H
1 TROFEN
- 20
- 20
- 20
- 20 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
105.11.08 | N N N N N N N N N N N N N N N N N N N | - 125
- 125
- 125
- 125
- 125
- 125
IS GUTHE | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | - 100
- 100
- 100
- 100
- 100
- 100
HCH
A BETA
- 10
- 10 | -5
-5
-5
-5
-5
-5
HCH HCH
DELTA GAM | N N N N N N N N N N N N N N N N N N N | EI
EI
; | -10
-10
-10
-10
-10
-10
EPTA
HLOR
POXIDE
-5
-5 | HEXA
CHLORO
BENZENE | | H
N
N
H
THION | I MET | D
D
D
D
HION
N | -15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50 | -61
-61
-61
-66
-6
-6 | 0
0
0
0
1REX
-40
-40
-40 | - 12
- 12
- 12
- 12
- 12
MOLIN | IATE | N
N
N
N
H
H
- 20
- 20
- 20
- 20
- 20 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
105.11.08
106.12.03 | N N N N N N N N N N N N N N N N N N N | - 125
- 125
- 125
- 125
- 125
- 125
- 125
- 125 | -10
-10
-10
-10
-10
-10
-10
EDN HCH
ALPH/ | - 100
- 100
- 100
- 100
- 100
- 100
- 10
- 1 | -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 - | H HEPTAC
MA -5 | EI
EI
S | -10
-10
-10
-10
-10
EPTA
HLOR
POXIDE
-5
-5 | N
N
N
N
HEXA
CHLORO
BENZENE | | H
H
H
THION | I MET | D
D
D
D
HION
N
N | -15
-15
-15
-15
-15
-15
METH
OXYCH | -61
-61
-61
-66
-6
-6 | 0
0
0
0
1REX | - 12
- 12
- 12
- 12
- 12
- 12
- 18
- 18
- 18
- 18
- 18
- 18
- 18
- 18 | IATE I | N N N H H H H H - 20 - 20 - 20 - 20 - 20 - 20 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
105.11.08
106.12.03
111.12.01 | FONOFO 3 -10 3 -10 5 -10 5 -10 1 -10 | -125
-125
-125
-125
-125
-125
-125
S GUTHE | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | HEPTAC
MA -5 | CI
EI
;
; | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA
CHLORD
BENZENE
-5
-5
-5 | | H
H
H
THION | I MET | D D D D D D D D D D D D D D D D D D D | -15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50 | -61
-61
-64
-64
-6
-6 | 0
0
0
0
1REX
-40
-40
-40 | - 12
- 12
- 12
- 12
- 12
MOLIN | ATE | N
N
N
N
H
H
- 20
- 20
- 20
- 20
- 20 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
105.11.08
106.12.03
106.12.03
111.12.01 | FONOFO 3 -10 3 -10 5 -10 5 -10 1 -10 1 -10 | - 125
- 125
- 125
- 125
- 125
- 125
- 125
S GUTHE | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | N N N N N N N N N N N N N N N N N N N | EI
EI
;
; | -10
-10
-10
-10
-10
-10
-10
EPTA
HLOR
POXIDE
-5
-5
-5 | HEXA
CHLORO
BENZENE
-5
-5
-5 | | H
H
H
THION | I MET | D D D D D D D D D D D D D D D D D D D | -15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50
-50 | -61
-61
-64
-64
-64
-64
-64 | 0
0
0
0
1REX
-40
-40
-40
-40 | - 12
- 12
- 12
- 12
- 12
- 12
- 18
- 18
- 18
- 18
- 18
- 18
- 18
- 18 | IATE I | N N N H H H H H - 20 - 20 - 20 - 20 - 20 - 20 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00 | FONOFO | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10
-10
-10
-10
-10
-10
HCH
ALPHI
1 -2
-2
-2
-2
-2
-2 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | HEPTAC
MA -5 -5 -5 -5 -5 -5 -5 -5 -5 | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
EPTA
HLOR
POXIDE
-5
-5
-5
-5
-5 | HEXA
CHLORD
BENZENE
-5
-5
-5
-5
-5
-5 | ILLON I | N N N N N N N N N N N N N N N N N N N | I MET DAT | D D D D HION N N N N N N N N N N N N N N N N N N | -15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50
-50
-50 | -61
-61
-61
-66
-66
-6
H
LOR | -40
-40
-40
-40
-40
-40
-40 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | T A | N N N N N N N N N N N N N N N N N N N | | 106.12.03
106.12.03
101.12.01
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
106.12.03
111.12.01
526.22.00
STATION | FONOFC 3 - 10 3 - 10 5 - 10 5 - 10 1 - 10 0 - 10 CIS NOMACH | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-6
-7
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2 | HEPTACIMA N 1 HEPTACIMA -5 -5 -5 -5 -5 OXYCHLORI | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA N HEXA CHLORD BENZENE -5 -5 -5 -5 -5 -5 -7 N PARATI | ILLON I | N N N N N N N N N N N N N N N N N N N | PCR | D D D D RI HION N N N N N N N N N N N N N N N N N N | -15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50
-50
-50 | -61
-61
-61
-66
-66
-6
H
LOR | -40
-40
-40
-40
-40
-40
-40
-70 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | T A | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
SIATION
105.11.08
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00 | N
N
N
N
N
D H
FONOFC
3 - 10
3 - 10
5 - 10
1 - 10
0 - 10
C1S
NOMACH | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | HEPTAC HEPTAC MA -5 -5 -5 -5 -7 OXYCHLOR | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA CHICORD BENZENE -5 -5 -5 -5 -5 -1 -5 -1 HETHYL | ILLON I | N N N N N N N N N N N N N N N N N N N | PCR 1248 | D D D D HI HION N N N N PCB 1254 | -,15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50
-50
-50
-50
-50 | -61
-61
-66
-66
-60
HLOR | -40
-40
-40
-40
-40
-40
-40
-40 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | T A
DROPE | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
SIATION
105.11.08
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00 | N
N
N
N
N
D H
FONOFC
3 - 10
3 - 10
5 - 10
1 - 10
0 - 10
C1S
NOMACH |
-125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5
-5
-5
-5
-5
-5
-5
-7
-5
-7
-7
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2 | HEPTAC
MA HEPTAC MA -5 -5 -5 -5 -5 -5 -10 -10 | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
EPTA
HILOR
POXIDE
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5 | HEXA CHLORD BENZENE -5 -5 -5 -5 -1 METHYN H | ILLON I | N N N N N N N N N N N N N N N N N N N | PCB
1248 | DD DD DD HI HION N N PCB 1254 | -,15
-15
-15
-15
-15
-15
METH
OXYCH
-50
-50
-50
-50
-50
-50 | -66-66-66-66-66-69-69-69-69-69-69-69-69- | -40
-40
-40
-40
-40
-40
-40
-5 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | T A
DROPE | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
106.12.03
111.12.01
526.22.00
STATION | N N N N N N N N N N N N N N N N N N N | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-6
-7
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2 | N N N N N N N N N N N N N N N N N N N | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA CHICORD BENZENE -5 -5 -5 -5 -5 -1 -5 -1 HETHYL | ILLON I | N N N N N N N N N N N N N N N N N N N | PCB 1248 -50 -50 -50 | DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | -15
-15
-15
-15
-15
-15
-15
METH OXYCH
-50
-50
-50
-50
-50
-50
-50
-50
-50
-50 | -66 -66 -66 -66 -66 -67 -67 -67 -67 -67 | -40
-40
-40
-40
-40
-40
-40
-5
-5 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | T A
DROPE
N
N
N | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00 | N N N N N N N N N N N N N N N N N N N | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-6
-7
-2
-2
-2
-2
-2
-2
-2
-2
-2
-3
-2
-3
-2
-3
-2
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3 | N N N N N N N N N N N N N N N N N N N | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA CHLORD BENZENE -5 -5 -5 -5 -1 METHYN H | ILLON I | N N N N N N N N N N N N N N N N N N N | PCB 1248 -50 -50 -50 -50 | DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | -,15
-15
-15
-15
-15
-15
-15
-50
-50
-50
-50
-50
-50
-50
-50
-50
-5 | -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 | -40
-40
-40
-40
-40
-40
-40
-40
-5
-5
-5 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | TA
OROPI
N
N
N | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
111.12.01
526.22.00
STATION
105.11.08
105.11.08
105.11.08
106.12.03 | FONOFC 3 - 10 3 - 10 3 - 10 5 - 10 5 - 10 6 - 10 C15 NOHACH N | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-6
-7
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2 | N N N N N N N N N N N N N N N N N N N | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA CHLORD BENZENE -5 -5 -5 -5 -1 METHYN H | ILLON I | N N N N N N N N N N N N N N N N N N N | PCB 1248 -50 -50 -50 -50 | DDDDDDDDDDDDDDDNHIHIONNNNNNNNNNNNNNNNNNN | -,15
-15
-15
-15
-15
-15
-15
-50
-50
-50
-50
-50
-50
-50
-50
-50
-5 | -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 | -40
-40
-40
-40
-40
-40
-40
-5
-5
-5 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | TA
DROPF
N
N
N | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
111.12.01
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
111.12.01
526.22.00
STATION
105.11.08
105.11.08
105.11.08 | FONOFC 3 -10 3 -10 5 -10 5 -10 6 -10 C1S NONACH N N N N N N N N N N N N N N N N N N N | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-6
-7
-2
-2
-2
-2
-2
-2
-2
-2
-2
-3
-2
-3
-2
-3
-2
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3 | N N N N N N N N N N N N N N N N N N N | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA CHLORD BENZENE -5 -5 -5 -5 -1 METHYN H | ILLON I | N N N N N N N N N N N N N N N N N N N | PCB 1248 -50 -50 -50 -50 | DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | -,15
-15
-15
-15
-15
-15
-15
-50
-50
-50
-50
-50
-50
-50
-50
-50
-5 | -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 | -40
-40
-40
-40
-40
-40
-7
-5
-5
-5
-5
-5 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | TA
DROPF
N
N
N
N | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | | 106.12.03
106.12.03
106.12.03
111.12.01
111.12.01
526.22.00
STATION
105.11.08
106.12.03
106.12.03
111.12.01
526.22.01
STATION
105.11.08
105.11.08 | FONOFC 3 -10 3 -10 5 -10 5 -10 6 -10 C1S NONACH N N N N | -125
-125
-125
-125
-125
-125
S GUTHE
N
N
N
N | -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | -100
-100
-100
-100
-100
-100
-10
-10
-1 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | N N N N N N N N N N N N N N N N N N N | EI
EI
S
S
S
S
DANE PA | -10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | HEXA
N
N
N
HEXA
CHLORD
BENZENE
-5
-5
-5
-5
-5
-5
-1
HETHYN
N
N
N
N | ILLON I | N M N N N N N N N N N N N N N N N N N N | PCB 1248 -50 -50 -50 -50 | DDDDDDDDDDDDDDDNHIHIONNNNNNNNNNNNNNNNNNN | -,15
-15
-15
-15
-15
-15
-15
-50
-50
-50
-50
-50
-50
-50
-50
-50
-5 | -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 | -40
-40
-40
-40
-40
-40
-40
-5
-5
-5 | - 12
- 12
- 12
- 12
- 12
- 12
MOLIN
N
N
N
N | TA
DROPF
N
N
N | N N N N H H H N 1 1 ROFEN - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2 | N = not analyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). 1979 (continued) | STATION | PERTHANE | PHENKAPION | PHORATE | PRONAMIDI | RONNE | L SIMAZINE | STROBANE | TCE | TETRADIFON | TOXAPHENE | | KS >5PFB
ETHYL ETHER | |-----------|----------|-------------------|-----------------------------|-----------|-------|-----------------------|------------------|--------|----------------------|------------|---------------------------|---------------------------------| | 105.11.08 | -500 | -50 | - 100 | N N | .5 | N - | -200 | N | -50 | - 250 | | N | | 105.11.08 | -500 | -50 | - 100 | N | . 5 | N | - 200 | N | -50 | -250 | | M | | 106.12.03 | -500 | -50 | - 100 | N | ٠5 | Ħ | - 200 | N | -50 | -250 | | N | | 106.12.03 | -500 | -50 | - 100 | N | - 5 | N | -200 | N | -50 | ·250 | | M | | 111.12.01 | -500 | - 50 | -100 | N | - 5 | N | - 200 | N | -50 | · 250 | , | H | | 111.12.01 | -500 | -50 | - 100 | Ħ | - 5 | N | -200 | N | -50 | -250 | | H | | 526.22.00 | -500 | -50 | - 100 | N | -5 | N | - 200 | N | -50 | -250 | | H | | STATION | | KS >5PPB
ETHYL | # PEAKS
@ 15% E
ETHER | | | Z,4-D
ISOBUTYL EST | 2,4-1
ER N-BU | TYL ES | 2,4-D
STER ISOPRO | OPYL ESTER | TETRA
CHLORO
PHEHOL | DICHLORO
BENZO
PHENONE P, | | 05.11.08 | | N | | | N | - 250 | | - 200 |) | ·50 | N | N | | 105.11.08 | | N . | j | ! | N | -250 | | - 200 |) | -50 | N | 11 | | 106.12.03 | | N | i | } | N | -250 | | - 500 |) | -50 | N | N | | 106.12.03 | | N | • | ı | N | - 250 | | - 200 | | -50. | H | R | | 111.12.01 | | H | j | f | N | -250 | | - 200 | | · 50 | N | N
•- | | 111.12.01 | | N | , | t | H | - 250 | | -200 |) | ·50 | N | N | | 526.22.00 | | Н | i | | U | -250 | | - 200 |) | -50 | N | N | N = not analyzed. - = below indicated detection limit. D * below detection limit (no limit indicated). 1980 ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATION | SIAI | HOH HA | HE | | | COMMON | | ISSUE
TYPE | SAMPLE
DATE | LDRIH | ÀTRAZI | INE BEN | EFIN (| ARBAR | PI | IRBO
IENO
I I ON I N | | BEN
BEN | DR
SIDE |
--|---|--|--|--|--|--|--|--
--|----------|--|--|---|--|---|--|--------------|---|--| | 103.11.12 | 51111 | H R/JE(| DEDIAII S | HITH RE | DVOO | O CRAYFIS | 519 | VHOLE B | 0 - 10 - 18 | .5 | H | ., | · | H | | | | | | | 103.11.12 | SHII | II R/JEI | SEDIAN S | METH RE | OWO | | 1 | | | - 5 | H | | | ĸ | | 50 | .5 | • | | | 195.38.03 | REAM | AIH R | COPCO | RESERVO | PIC | YELLOW | PERCH | FLESH 8 | 0 - 10 - 20 | -5 | N | į. | | Ä | | 50
50 | ·5 | | | | 519.10.07 | RECT. | ANA I LON | SLOUGH | ! ₩ | | CHANNEL | CATFISH I | RESII 8 | 10-10-21 | . 5 | | - | | | | | | | i | | 519.10.07 | REILE. | VIVITO | SLOUGH | * | | BROWN 8 | ULLHEAD I | LESH 8 | 0-10-23 | .5 | H . | | | N | | 50 | . 5 | . 5 | | | 520.11.36 | COLUS | SA DRAI | M/ABEL I | GAOS | | BROWN BI | | | | - | N T | - 5 | | N | | ·S0 . | ٠5 | . 5 | | | 320.11.36 | COLUS | A DRAI | HIADEL A | MAR | | BROWN BI | | | 0-10-23 | .5 | H | • 5 | | N | | 20 | .5 | . 5 | • | | 524.47.15 | SACRA | MENTO I | R / KESI | /I CK | | RAINBOW | | | 0 - 10 - 23 | .5 | N | - 5 | | N | | 20 | - 5 | . 3 | | | 524.47.15 | SACRA | MENTO | R / KESL | /1ck | | RATHBOW | | | 0-10-08
0-10-09 | H | N | H | | . # | | H | N | Ħ | | | 526.14.00 | PITR | 1/PII 7 | POPERHO | USE | | RATHBOW | | | | ·5
·5 | . N | - 5 | | N | | 20 | -5 | - 5 | | | | | | _ | | | | 18001 7 | LE 5/1 (II | 0.10.53 | •3 | W | •5 | | Ħ | • | 20 | ٠5 | .5 | | | | ALF | lia. | CIS | , GAHE | | 1RAHS | total r | UI OROUS | 8 CHLOR | .4 | | 000 b | | | | <u> </u> | | | | | SIATION | CHLOR | DENE CI | LORDANE | CHLORD | EHE | CHLORDAN | E CHLORDA | NE
NE | PYRIFOS | DACTH | AL 0-0 | | , P O, P | | | | | 001
P.P | TOTAL | | 103.11.12 | Н | | · 5 | H | | · 5 | D | -30 | - 10 | -5 | | ·10 · | 10 - 10 | .5 | -30 | . 15 | · 10 | .10 | | | 103.11.12 | H | | ٠5 | Ħ | | -5 | b · | -30 | - 10 | . 5 | 'n | | 10 - 10 | | -30 | | -10 | | | | 105.30.03 | - 11 | | ٠5 | , H | | - 5 | D | - 30 | -10 | . 5 | ŭ | | 10 -10 | • | -30 | | -10 | | D | | 519.10.07 | И | | ٠5 | H | | -5 | 8 | - 30 | - 10 | .5 | | -10 | | | -30 | | | | 0 | | 519.10.07 | N | | 12 | N | | Š | 49 | -30 | - 10 | .5 | 74
LL | | 1014 | | · 30 | | - 10
- 10 | | 437 | | 20.11.36 | И | | 10 | Ħ | | Ī. | | -30 | - 10 | 21 | , F | | 6 - 10 | | | | | | 1358 | | 30.11.36 | И | | -5 | . 18 | | - 5 | 36
12 | -30. | - 10 | 36 | Ñ. | 10 | J . 10 | 557 | .30 | | -10 | | 355 | | 524.47.15 | н | | H | H | | N | N | N | Ň | N N | 'n. | 16 | N N | 그릇을 | .30 | | | | . 623 | | 24.47.15 | Ħ | | -5 | N | | . 5 | b | -30 | - 10 | -5 | | -10 -1 | | 돭 | .30 | | -10 | N N | -22. | | 526.14.00 | H | | | | | | | | | | | | | | | | | | 25 | | | | | -5
 | N
Direct | | .5 | D | -30 | -10 | -5 | × | -10 -1 | 0 - 10 | 56. | -30 | -15 | -10 | -10 | .56 | | STATION | EF OI | | DICHLO
FENTHIO | DICOF
N | | IELORIN | DIPHENAHII | D ENDO
SULFA | EHDO
H 1 SULFAI | E 11 S | N
ODH
HATJU | 10 -1 | ENDR | 56. | -30
 | -15 | -10
RD FI | -10 | .56 | | STATION 03.11.12 | N . | 50 | DICHLO
FEMIHIO
-10 | 01 COF
N - 100 | <u>.</u> | 1ELORIN
-5 | DIPHENAMII
N | D ENDO
SULFA | EHOO
IN 1 SULFAH | E 11 S | N
ODH
HATJU | 10 -1
TOTAL
ENDO | ENDR | 56.
IN ET | -30
 | -15
FENIT | -10
RD FI | -10 | .56 | | STATION 03.11.12 | N . | 50
50 | - 10
- 10 | • 100
• 100 |)
 | 1ELDR1N
-5
-5 | DIPHEHAHII
R
R | D ENDO
SULFA | EHOO
IN 1 SULFAI | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL
ENDO
SULFAI | ENDR | 56.
IN ET | +10H | -15
FENIT
THION | -10
RD FI | ·10 | .56 | | STATION 03.11.12
03.11.12
03.31.12 | N | 50
50
50 | - 10
- 10
- 10
- 10 | • 100
• 100
• 100
• 100 |)

 | 1ELDR1N
-5
-5 | DIPHENAMII
H
H
H | D ENDO
SULFA | EHOO
IN 1 SULFAI
5 H
5 H | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL
ENDO
SULFAI | ENDR | .56.
IN ET | -30
HIOH | -15
FENIT
THION | -10
RO FI | ·10
HTHI | .56 | | 03.11.12
03.11.12
03.11.12
05.38.03
19.10.07 | N N N N N N N N N N N N N N N N N N N | 50
50
50
50 | - 10
- 10
- 10
- 10
- 10
- 10 | • 100
• 100
• 100
• 100
• 100 |)

 | -5
-5
-5
-5
-7 | DIPHENAMII
H
H
H
H
H | D ENDO
SULFA | EHOO
IN 1 SULFAR | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL
ENDO
SULFAI
D
D | ENDR
4
- 15
- 15
- 15 | 56. | -30
20
20
20
20 | -15
FENIT
THION
-10
-10
-10 | -10
RO FI | ·10 H H H | .56 | | 03.11.12
03.11.12
03.11.12
05.38.03
19.10.07 | N | 50
50
50
50
50 | - 10
- 10
- 10
- 10
- 10
- 10
- 10 | • 100
• 100
• 100
• 100
• 100 |)

 | 1ELDR1N -5 -5 -5 -7 40 | DIPHENAMII
H
H
H | D ENDO
SULFA | ENDO
IN 1 SULFAN
5 H
5 R
5 R
5 R | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL
ENDO
SULFAI
D
D | ENDR
4
- 15
- 15
- 15
- 15 | 56. | -30
20
20
20
20 | -15
FENIT
THION
-10
-10 | -10
RO FI | · 10
ENTHE
H
H
H | .56 | | 03.11.12
03.11.12
03.11.12
05.38.03
i19.10.07
i19.10.07
20.11.36 | N H H H H H H | 50
50
50
50
50
50 | -10
-10
-10
-10
-10
-10
-10 | • 100
• 100
• 100
• 100
• 100
• 100 |)

 | -5
-5
-5
-5
-7 | DIPHENAMIO
N
N
H
H
H
H
N | D ENDO
SULFA | EHDO H 1 SULFAH H 1 SULFAH H 1 SULFAH H 1 S H
1 S H 1 | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL
ENDO
SULFAI
D
D | ENDR
4
- 15
- 15
- 15 | 56. | -30
20
20
20
20 | -15
FENIT
THION
-10
-10
-10 | -10
RO FI | HTHE | .56 | | 03.11.12
03.11.12
03.11.12
05.38.03
119.10.07
119.10.07
20.11.36
20.11.36 | N | 50
50
50
50
50
50
50 | -10
-10
-10
-10
-10
-10
-10
-10 | 01 COFN - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |)

 -
 -
 - | 1ELDRIN -5 -5 -7 -40 -8 -5 | DIPHENAMIO
H
H
H
H
H
H
H
H | D ENDO
SULFA | EHDO
IN 1 SULFAI
5 N
6 R
6 N
7 R
6 N
7 R | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL
ENDO
SULFAI
D
D
D
D | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. | -30
20
20
20
20
20
20 | -15
FENIT
THION
-10
-10
-10 | -10
RO FI | HTHE | .56 | | 03.11.12
03.11.12
03.11.12
05.38.03
19.10.07
19.10.07
20.11.36
20.11.36
24.47.15 | N | 50
50
50
50
50
50
50 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 01 COP
N - 1000
- 1000
- 1000
- 1000
- 1000
- 1000
- 1000
- 1000 | | 1ELDRIN -5 -5 -7 -40 -8 -5 N | DIPHENAMIA
N
N
H
H
H
H
H
H | D ENDO
SULFA | EHDO H 1 SULFAI SU | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL ENDO SULFAI | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. | -30
HION
20
20
20
20
20
20 | -15 FENIT THION -10 -10 -10 -10 -10 -10 | -10
RO FI | HTHE | .56 | | 03.11.12
03.11.12
03.11.12
03.11.12
03.11.07
19.10.07
20.11.36
24.47.15 | N H | 50
50
50
50
50
50
50
50
50 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 0 i COP
N - 100
- 100
- 100
- 100
- 100
- 100
- 100
- 100 | | 1ELDR1N -5 -5 -7 -40 -5 -8 -5 -8 | P H H H H H H H H H H H H H H H H H H H | D ENDO
SULFA | ENDO N 1 SULFAN | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL ENDO SULFAI | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. | -30
HIOH
20
20
20
20
20
20
80
80
80
80
80
80
80
80
80
80
80
80
80 | -15 FENITHON -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | -10
RO FI | HTHE | .56 | | 03.11.12
03.11.12
03.11.12
03.11.12
05.38.03
619.10.07
19.10.07
19.10.07
20.11.36
20.11.36
24.47.15
24.47.15
24.47.15 | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
50
8
50
8 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 01 COP N - 1000 | | 1ELDRIN -5 -5 -7 -40 -8 -5 N | DIPHENAMIA
N
N
H
H
H
H
H
H | D ENDO
SULFA | ENDO N 1 SULFAN | E 11 S | N
HDO
IJLFAN
ULFATE | TOTAL ENDO SULFAI D D D D D D D D D D D D D D D D D D D | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. | -30
HIOH
20
20
20
20
20
20
80
80
80
80
80
80
80
80
80
80
80
80
80 | -15
FENIT
THION
-10
-10
-10
-10
-10
-10
-10 | -10
RO FI | HTHE | .56 | | 03.11.12
03.11.12
05.38.03
19.10.07
19.10.07
19.10.07
20.11.36
20.11.36
24.47.15
24.47.15
24.47.15 | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
50
8
50
8 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 01 COF N - 1000 | HCH | -5 -5 -7 40 8 -5 N -5 -5 -5 | DIPHENAMIA R R
R R R R R R R R R R R R R R R R | D ENDO
SULFA | ENDO N 1 SULFAN | f 11 S | N
HDO
IJLFAN
ULFATE | TOTAL ENDO SULFAI D D D D D D D D D D D D D D D D D D D | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | SA. | -30
HION
20
20
20
20
20
20
80
80
80
80
80
80
80
80
80
80
80
80
80 | -15 FENITHON -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | -10
RO FI | HTHE
HH
H
H
H
H
H
H
H | SIG
DH | | 03.11.12
03.11.12
03.11.12
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10. | N H H H H H H H H H H H H H H H H H H H | 50
50
50
50
50
50
50
50
50
8
8
8
8
8
9 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 100 - | -S
HCH
HCH | -5 -5 N -5 -5 N GAPHA | DIPHENAHII N N N N N N N N N N N N N N N N N N | D ENDO
SULFA | ENDO H 1 SULFAI N 1 SULFAI N N N N N N N N N N N N N N N N N N N | f 11 S | HDO
JILFAH
ULFATE
H
H
H
H
H
H
H
H
H | TOTAL ENDO SULFAI D D D D D D D D D D D D D D D D D D D | ENDR
- 15
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. | -30
HIOH
20
20
20
20
20
20
20
20
80
20
80
80
80
80
80
80
80
80
80
80
80
80
80 | -15 FENIT THTON -10 -10 -10 -10 -10 -10 -10 -10 -10 | -10 FO | HTHE HT | JG
DH
OFEN | | 03.11.12
03.11.12
03.11.12
05.18.03
19.10.07
19.10.07
19.10.07
20.11.36
20.11.36
20.11.36
24.47.15
24.47.15
24.47.15
26.14.00 | H H H H H H H H H H H H H H H H H H H | 50
50
50
50
50
50
50
8
50
8
50 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 100 - | -5 -5 | -5 -5 -7 -40 -5 -5 -7 -7 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 | DIPHENAMIN H H H H H H H H H H H H H H H H H H | D ENDO
SULFA | ENDO N 1 SULFAI S N 1 S N
1 S N 1 S | f 11 S | M
DOC
ULFAN
ULFATE
N
N
N
N
N
N
N
H
N | TOTAL ENDO SULFAI D D D D 22 D D H D D D D D D D D D D D D D D D D D | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. | -30
HION
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THION -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | NATE | HTHE HE H | SE S | | 03.11.12
03.11.12
03.11.12
05.38.03
19.10.07
19.10.07
20.11.36
20.11.36
24.47.15
24.47.15
26.14.00
STATION | N | 50
50
50
50
50
50
50
50
8
50
50
8
50 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 01 COP N - 1000 | -22
-22 | -5 -5 NCH A GAPHIA | DIPHENAMIN N N N N N N N N N N N N N N N N N N | SULFA SU | ENDO H 1 SULFAI N 1 SULFAI N 1 N N N N N N N N N N N N N N N N N | f 11 S | HDO
JILFAH
ULFATE
H
H
H
H
H
H
H
H
H | TOTAL ENDO SULFAI D D D D D D D D D D D D D D D D D D D | ENDR
4
- 15
- 15
- 15
- 15
- 15
- 15
- 15
- 15 | 56. IN ET | -30
HION
20
20
20
20
20
20
80
20
N
20
20
N
20
20 | -15 FENIT THTON -10 -10 -10 -10 -10 -10 -10 -10 | -10 FO | HTHE HT HE HT | 36
ON OFEN | | 51A110H 203.11.12 203.11.12 205.18.03 19.10.07 19.10.07 19.10.07 19.11.36 20.11.36 20.11.36 24.47.15 24.47.15 24.47.15 26.14.00 51A110H | N H H H H H H H H H H H H H H H H H H H | 50
50
50
50
50
50
50
50
8
50
8
8
8
8 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | 0 1 COP N - 1000 - 200 - 200 - 200 - 200 - 200 | HCH DEL1 | -5 -5 -7 40 8 -5 N -5 -5 N GAPHA GAPHA | DIPHENAMIN N N N N N N N N S S S S S S S S S S | D EMDO
SULFA | ENDO IN 1 SULFAI THE NA THE NA THE CHLORO THE BENZEN THE STATE OF | f 11 S | HDO
JILFAH
ULFATE
H
H
H
H
H
H
H
H
H | TOTAL ENDO SULFAI D D D D 22 D D H D D D D D D D D D D D D D D D D D | ENDR 4 - 155 - 15 - 15 - 15 - 15 - 15 - 15 - 1 | 56. IN ET | -30
HION
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THTON -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | NATE | H H H H H H H H H H H H H H H H H H H | 36
ON
OF EN | | 51A110H 03.11.12 03.31.03 19.10.07 19.10.07 19.10.07 19.10.07 19.10.07 51A110H 51A110H 103.11.12 103.11.12 103.11.12 105.30.03 119.10.07 | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
8
50
8
50
8
6
8 | - 10
- 10
- 10
- 10
- 10
- 10
- 10
- 10 | DICOPN - 1000 - | -22
-22 | -5 -5 -7 40 8 -5 N -5 -5 N GAPHA GAPHA | DIPHENAHII N N N N N N N N N N N N N T T T T T | B ENDO
SULFA | ENDO N 1 SULFAI N 1 SULFAI N N N N N N N N N N N N N N N N N N N | f 11 S | HDO
JILFAH
ULFATE
H
H
H
H
H
H
H
H
H | TOTAL ENDO SULFAI DD | EHDR 4 -155 -155 -155 -155 -155 -155 -155 -1 | 56 IN ET | -30
HIOH
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THTON -100-100-100-100-100-100-100-100-100-10 | NATE | H H H H H H H H H H H H H H H H H H H | 56
DN
OF EN | | 03.11.12
03.11.12
03.11.12
03.11.12
05.38.03
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
19.10.07
10.11.36
24.47.15
24.47.15
24.47.15
24.47.15
24.47.15
24.47.15
24.10.00
51ATION | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
50
50
8
50
50
8
60
11
11 | DICHLO FENFHIO -10 -10 -10 -10 -10 -10 -10 -10 -10 -1 | 0 1 COP N - 1000 -
1000 - 100 | HCH DEL1 | -5 -5 -7 40 8 -5 N -5 -5 HICH A GAHHA | DIPHENAMIN N N N N N N N N S S S S S S S S S S | D ENDO
SULFA | ENDO H 1 SULFAI N 1 SULFAI N 1 N N N N N N N N N N N N N N N N N | f 11 S | N HOO TIL FAN UL FATE N N N N N N N N N N N N N N N N N N N | TOTAL ENDO SULFAI D D D D D D D D D D D D D D D D D D D | ENDR 4 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 | 56 IN ET | -30
HION
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THTON -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | NATE | H H H H H H H H H H H H H H H H H H H | 56
DM
OF EN | | 03.11.12
03.11.12
03.11.12
05.38.03
19.10.07
19.10.07
20.11.36
20.11.36
24.47.15
24.47.15
26.14.00
STATION | N H H H H H H H H H H H H H H H H H H H | 50
50
50
50
50
50
50
50
8
50
8
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | 0 1 COP N - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 20 | HCH DELT -22.02.02.02.02.02.02.02.02.02.02.02.02.0 | -5 -5 -7 40 8 -5 -5 N -5 -5 HCH A GAHMA -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 | DIPHENAMIN N N N N N N N S S S S S S S S S S S | D ENDO
SULFA | ENDO H 1 SULFAN N N N N N N N N N N N N N N N N N N | f 11 S | HDO
JILFAH
ULFATE
H
H
H
H
H
H
H
H
H | TOTAL ENDO SULFAL DD | ENDR 4 -13 -15 -15 -15 -15 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 | 56
IN ET
CHLOR
30
30
30
30
30
30 | -30
HIOH
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THYON -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | NATE | H H H H H H H H H H H H H H H H H H H | 56
DN
OF EN | | 03.11.12
03.11.12
03.3.11.12
19.10.07
19.10.07
19.10.07
19.10.07
20.11.36
20.11.36
20.4.47.15
24.47.15
24.47.15
24.47.15
26.14.00
STALLON
103.11.12
103.11.12
103.11.12
103.11.12
103.11.13
105.30.03
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
107.10.07
1 | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
50
50
8
60
11
11
11
11
11
11
11
11
11
11
11
11
11 | DICHLO FENTHIO - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | DICOPN - 1000 - | HCH DELT -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 | -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 - | DIPHENAMIN N N N N N N S S S S S S S | D ENDO
SULFA | ENDO IN 1 SULFAI S H S H S H S H S H S H S H S H S H S | f 11 S | N HOO TIL FAN UL FATE N N N N N N N N N N N N N N N N N N N | TOTAL ENDO SULFAIDO DO D | ENDR 4 -13 -15 -15 -15 -15 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 | 56 IN ET | -30
HIOH
20
20
20
20
20
20
20
8
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15
FENIT THION -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | NATE | H H H H H H H H H H H H H H H H H H H | 56
DN
OF EN | | 51A110H 03.11.12 03.11.12 15.38.03 19.10.07 19.10.07 20.11.36 20.11.36 24.47.15 24.47.15 24.47.15 103.11.12 103.11.12 105.38.03 119.10.07 119.10.07 120.11.36 120.11.36 120.11.36 | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
50
50
50
50
8
8
8
8 | - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | 0 1 COF
N - 1000
- 200
- 200 | HCH DEL! -2.2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2 | -5 -5 -7 -40 -5 -5 -7 -40 -5 -5 -7 -7 -40 -5 -5 -5 -5 -5 -5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 | DIPHENAMIN N N N N N N N S -5 -5 -5 -5 | D ENDO
SULFA | ENDO N 1 SULFAI N 1 SULFAI N 1 N N N N N N N N N N N N N N N N N | f 11 S | N NOO JILFAN ULFATE N N N N N N N N N N N N N N N N N N N | TOTAL ENDO SULFAI DD | EHDR 4 -15 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 | 56.
IN ET
HLOR
30
30
30
30
30
30
30
30
30
30
30 | -30
HION
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THION -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | NATE | - 10
H
H
H
H
H
H
H
N
N
N | 56
DN
OFEN
10
10
10
10
10
10 | | 51A110H 23.11.12 23.11.12 25.38.03 19.10.07 19.10.07 19.10.07 19.10.07 20.11.36 20.4.47.15 24.47.15 24.47.15 26.14.00 51A110H | N N N N N N N N N N N N N N N N N N N | 50
50
50
50
50
50
50
50
50
8
60
11
11
11
11
11
11
11
11
11
11
11
11
11 | DICHLO FENTHIO -10 -10 -10 -10 -10 -10 -10 -10 -10 -1 | 0 1 COF
N - 1000
- 200
- 200 | -2.0
-2.0
-2.0
-2.0
-2.0 | -5 -5 -7 -40 -5 -5 -7 -40 -5 -5 -7 -7 -40 -5 -5 -5 -5 -5 -5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 | DIPHENAMIN N N N N N N N S S S S S S S S N | D ENDO
SULFA | ENDO H 1 SULFAN N 1 SULFAN N N N N N N N N N N N N N N N N N N | f 11 S | N HOO TIL FAN UL FATE N N N N N N N N N N N N N N N N N N N | TOTAL ENDO SULFAIDO DO D | EHOR 4 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - | 56 IN ET | -30
HIOH
20
20
20
20
20
20
20
8
20
20
20
20
20
20
20
20
20
20
20
20
20 | -15 FENIT THION -10 (10 -10 -10 -10 -10 -10 -10 -10 -10 -10 - | NATE | - 10
ENTHE
H
H
H
H
H
H
H
N
N
N | 56
DN
OF EN | N = not mnalyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). ^{*} NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA 1980 (contlined) | STATION | CTS
NONACHLOR | TRANS
NONACHLOR | OHITE | ORGANO
ARSENT | | CHLORDANE | PARATHION
ETHYL | PARATHION,
METHYL | | | | PC8
1260 | | PCNB | | PHENOL | |---------------|------------------|--------------------|--------|------------------------|----------|-----------|--------------------|----------------------|-------|------|------------|-------------|---------|------|------------------------|---------------------------------| | 103.11.12 | " H | -5 | N | H | | . 5 | - 10 | -10 | -50 | -50 | -50 | -50 | D | -5 | | H | | 103.11.12 | N | -5 | N | K | | . 5 | 10 | - 10 | -50 | -50 | -50 | -50 | D | -5 | | H | | 105.38.03 | 14 | -5 | N | Ñ | | Š | -10 | · iŏ | -50 | -50 | -50 | -50 | D | ٠5 | ŀ | N | | 519.to.07 | × γ | 8 | Ħ | N | | | - 10 | - 10 | -50 | -50 | -50 | 180 | 180 | . 5 | 1 | ¥ | | 519.10.07 | ≯ N | 32 | H | H | | ٠.5 | • 10 | • 10 | -50 | -50 | .50 | 350 | | -5 | i | N | | 520.11.36 | И | . 19 | H | N | | | -10 | -10 | -50 | -50 | . 50 | 350 | | -5 | | u , | | 520, 11.36 | H | 12 | N | Ü | | | - 10 | - 10 | -50 | -50 | -50 | | 330 | -5 | | | | 524.47.15 | N | N N | Ñ | N. | | ű | N | N | N | | - JU | -518 | 420 | - 3 | | M . | | 524.47.15 | N | -5 | N | ü | | · ŝ | - 10 | - 10 | -50 | -50 | .50 | -50. | n
h. | 5 | 1 | N
M | | 526.14.00 | N | · 5 | H | Ü | | ٠,5 | - 10 | -10 | -50 | -50 | -50 | -30 | ָ b | 5 | | r
H | | STATION | PERTHANE | PHENKAPTO | OH PHO | DRATE | PRONAHID | E RONNEL | SIHAZINE | STROBANE | 1 CE | 161 | RADIF | DH 1 | OXAPHE | HE | | AKS >5PPB
ETHYL ETHER | | 103.11.12 | 450 | | | | | | | | | | | | <u></u> | | | | | 103.11.12 | - 150 | - 25 | | 60 | H | -5 | H · | · 500 | ĸ | | - 20 | • | . 100 | | | M | | | - 150 | · 52 | | 60 | H | -5 | Ħ | - 200 | * | | - 20 | | : 100 | | | N | | 105.30.03 | - 150 | · 55 | • | 60 | H | -5 | H | - 200 | | | -50 | | - 100 | | | H | | 19.10.07 | - 150 | · 25 | | 60 | H | -5 | Ħ | - 200 | H | | - 20 | | 300 | | | H | | 19.10.07 | - 150 | - 25 | | 60 | Ħ | ٠5 | 14 | - 200 | Ħ | | - 20 | | 400 | | | M | | 520.11.36 | - 150 | - 25 | | 60 | H | -5 | N | - 200 | Ń | | - 20 | | 200. | | | W | | 520.11.36 | - 150 | - 25 | | 60 | N | .5 | Ħ | -200 | Ä | | - 20 | | 100 | | | W | | 524.47.15 | Ħ | H | | N | H | N | N | N | × | | H | | N | | | Ü. | | 524.47.15 | - 150 | · 25 | | - 60 | R | - 5 | H | - 200 | Ħ | | - 20 | | - 100 | | | Ü | | 26.14.00 | - 150 | - 25 | | 60 | H | -5 | H | -200 | Ħ | | - 50 | | - 100 | | | Ä | | STATION | | KS >5PPB
ETHYL | Đ | PEAKS
15% ET
HER | | | ,4-D
SOBUTYL ES | 2,4-0
IER N-8U | | STER | 2,4
150 | | L ESTE | R (| ETRA
HLDRO
HENOL | DICHLORO
BENZO
PHENONE P, | | 03.11.12 | | 14 | | N | | N | - 100 | | -10 | 0 | | - | 100 | | N | N | | 103 . 11 . 12 | | N | | N | | Ħ | - 100 | | -10 | | | | 100 | | Ħ | N | | 105.38.03 | | H | | 11 | | N | - 100 | | - 10 | 0 | ٠. | • | 100 | | N | N | | 19.10.07 | | H | | N | | H | - 100 | | - 10 |) | | | 100 | | N | H | | 19.10.07 | | Ħ | | Н | | N | - 100 | | - 100 | | | • | 100 | | N | N | | 20.11.36 | | N | | H | | ii | -100 | | - 101 | | | | 100 | | v | - 81 | | 20.11.36 | | N | | 'n | | ü | -100 | | - 10 | | | | 100 | | n
V | N N | | 24.47.15 | | N . | | N | | ä | N . | | 101 | • | | - ' | W | | n
19 | N | | 24.47.15 | | N | | 'n | | Ü | · 100 | | - 10 | | | | 100 | | n
H | M | | 26.14.00 | |
H | | N | | п. | 100 | | - 100 | | | | 100 | | Ħ | | N = not analyzed. v = below indicated detection limit. D = below detection limit (no limit indicated). $[\]star$ not within northern district but within the monitoring area 1981 ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATION | STATI | он или | | | HAHE | | TISSUE
TYPE | SAMPLE
DATE | ALDRIN | ATRAZIHI | BENEFI | N CARBARY | L CARBO
PHENO
THEONE | | CHLORBENSI | |----------------------------------|------------------|------------|---------------|---------------------------------------|-----------------------|--------------|------------------------|----------------------|--------------|------------|------------------|-------------------------|----------------------------|------------------------|-------------| | 105.11.06 | | | | | SCULPIN | | | 91-09-14 | -5 | -50 | -5- | | - 20 | -5 | -5 | | 106.12.03
109.10.10 | | | ILLOW | CK | RATHOON TO
SCIRPIN | tout | | 11-09-13 | - N | .50 | . K | - 200 | . 50
M | . Y | ¥ | | 11.12.01 | | | A | | SCULPIN | | | B1-09-14
B1-09-16 | 13 | -50 | .51 | | -50 | .5 | .5 | | 11.63.14 | | | | | GREEN SUN | FISH | | 81-09-17 | ń | Ň | Ñ | Ä | H | Ñ | -5
N | | 13.52.16 | CLEAR ! | LAKE/RA | TILESH | AKE ISLE | LARGEHOUT | BASS | FLESH ! | 81-08-11 | - 5 | -50 | -5 | -200 | -20 | 5 | | | 19.10.06 | | | | | CARP | •• | | 81-07-16 | | -50 | - 5 | -500 | . 20 | ., | .5 | | 19.10.06 | | | | | CHANNEL | CATEISH | | 01-07-16 | ` .5 | -50 | 5 | -200 | | | | | 19.10.07 | | | | ! | CHARNEL | | | 81-07-16 | - | -50 | 5 | - 200 | | | | | 50.11.03 | COLUSA | DRAIN/ | KHIGHT | S LANDING | M CHANNEL | | | 81-07-23 | . 5 | -50 | - 5 | -200 | | | | | | | | | S LAHOTHG | | | | 81-07-23 | -5 | -50 | -5 | - 500 | -20 | | | | 20.11.36 | | | | | CHANNEL C | A F F I S II | | 81-07-23 | - 5 | -50 | | -500 | - 20 | • • | | | i20.11.36
i23.12.10 | | | | | CARP | | | 81-07-23 | .5 | -50 | .5 | - 500 | | | | | 24.47.15 | | | | | RATHBOY T | TIME | | 81-07-30
81-07-13 | | -50 | .5 | -200 | | | | | 25.11.01 | | | | | LARGEHOUT | | | 81-07-10 | :5 | ·50
·50 | ٠, | .200 | | | | | 37.20.22 | | | | | SUCKER | | | 81-07-28 | -5, | -50 | 5
-5 | - 200 | | | | | • | | | | | | | | | | - 70 | | -200 | | , •: | -5 | | STATION | ALPHA
HLORDEI | E CIILO | | GAMMA
CHLORDENE | TRANS
CIILORDANE | TOTAL (| CHLORONE n
E | CHLOR
PYRIFOS | DACTHAE | | | DE DOE DO
D,P P,P P, | | DOT DO | | | 05.11.08 | ٠2 | | -5 | . 5 | -5 | D | -30 | -10 | -5 | M -1 | 0 -10 - | 10 -5 -30 | - 15 | 10 -10 | D | | 06.12.03 | ٠z | | Ħ | ٠2 | Ħ | Ď | H | N | Ħ | | N N | N N N | | N N | | | 07.10.10 | ·S | | ٠5 | ٠.5 | - 5 | 0 | ·30 | -10 | -5 | - Ä •1 | 0 _Z. · | 10 -5 -30 | -15 - | 10 25 | . 35 | | 11.12.01 | ٠ź | | -5 | ٠Ž | - 5 | Ð | -30 | -10 | -5 | W +1 | | 10 -5 -30 | | 10 710 | <u> </u> | | 11.63.14 | -5 | | N | - 5 | H | D | H | M | Н | ••• | N N | H H H | l M | N 1 | i w | | 13.52.16 | N | | ٠5 | H | .5 | · Đ | •30 | - 10 | -5 | N -1 | 0 <u>12</u> . | 10 <u>J</u> .31 | 1 -15 | -10 -1 | 0 <u>26</u> | | 19.10.06 | . 5 | | ٠5 | ٠2 | ٠5 | D | -30 | - 10 | -5 | N -11 | 13 - | 10 66 -30 | - 15 - | 1010 | 79 | | 19.10.06 | - 5 | | 6 | - 5 | ٠5 | 19 | ·30 | 10 | -5 | N -1 | | 10 130 ·30 | 1 -15 - | 10 -10 | | | 19.10.07 | - 5 | | ٠5 | . 2 | - 5 | D | -30 | - 10 | ٠5 | H -1 | | | | 10 -10 | 108 | | 20.11.03 | - 2 | | 5 | ٠2 | .5 | 13 | ·30 | - 10 | 8 | N -1 | | 10 160 -30 | | 10 -10 | | | 20.11.03 | ٠.5 | | - 5 | ٠.5 | ٠5 | b | · 30 | - 10 | - 5 | H -1 | | | | 0 -11 | 2 2 1 | | 20.11.36
20.11.36 | · 5 | | . <u>\$</u> . | · 5 | -5
-5 | 12 | ·30 | - 10
- 10 | . <u>6</u> . | N 1 | 0 53.·
1 44 · | | | 10 3 | | | 23.12.10 | . 2 | | -5 | . 2 | .5 | 5 | -30 | -10 | -5 | N .1 | d -18 - | | | -10 -1
-10 -1 | | | 24.47.15 | . 5 | | -5 | . 2 | . 5 | b | -30 | -10 | .5 | N i | | | | | | | 25.11.01 | . 2 | | -5 | 2 | -5 | b | ·30 | - 10 | .5 | W -1 | | | | · 10 · 11
· 10 · 11 | | | 37.20.22 | ځ. | | 5.0 | 2 | .5.0 | 0 | -30 | -10 | -5.0 | N -1 | | | | 10
-10 | | | STATION | DEF D | I AZ L HOH | DICHLO | D DICOF | OL DIELDRI | | HID ENDO | ENDO
N I SULF | AN 11 S | NDO | IOTAL I | NORIN ET | | TRO I | FENTHION | | OE 11 00 | . 100 | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | 0 -1 | • | N | | 05.11.08
06.12.03 | - 100
| ·50 | - 10
N | - 100
N | -5
N | -50
N | -5
N | | M | N
N | / D | -15 -2
N | - | N
N | H | | 07.10.10 | | ·50 | - 10 | - 100 | -5 | -50 | -5 | | u
u | N | Ď | -15 ·2 | | | Ä | | 11.12.01 | | -50 | - 10 | - 100 | -5 | -50 | .5 | | N | Ä | ŏ. | -15 -2 | | | -20 | | 11.63.14 | N | N | H | N | Ñ | N | Ň | | N | Ħ | Ä | | | Ä | Ħ | | 13.52.16 | - 100 | -50 | - 10 | - 100 | -5 | -50 | -5 | • | H | W | D | · 15 - 2 | . 0 | 10 | H · | | 19.10.06 | - 100 | -50 | - 10 | - 100 | 5 | -50 | 16 | i | H | N | 16 | ·15 · | 0 -1 | 0 | -20 | | 19.10.06 | - 100 | -50 | - 10 | -100 | 6 | -50 | zz | | N | H | 22 | - 15 - 2 | | | -20 | | 19.10.07 | | ·50 | - 10 | - 100 | 5 | -50 | . 5 | | N | H | D | · iš · · | | 10 | - 20 | | 20.11.03 | | -50 | - 10 | -100 | 8 | -50 | 11 | | H | K | 11 | -15 -2 | | | -50/ | | 20.11.03 | | -50 | - 10 | - 100 | -5 | .50 | . 5 | | M | N | D . | | | 10 | -50 | | 20.11.36 | | ·50
·50 | - 10
- 10 | | | -50 | .5 | | M | Ħ | D | | | 10 | -20 | | 20.11.36
23.12.10 | | · 50 | -10 | | | -50
-50' | .5
.5 | | N | Ħ | D | | | 10
10 | -20° | | 23.16.10 | | | | | - | | | | M
M | H 1 | D | | | - | -20 | | 3, ,, | | -50 | - 10 | -100 | - 5 | -50 | - 5 |) | H | и . | D | | | 10 | W | | 24.47.15 | | EO | . 44 | | _ P | | - | • | 44 | | | . 12 | | 10 | 44 | | 24.47.15
25.11.01
37.20.22 | - 100 | -50
-50 | - 10
- 10 | | | ·50
·50 | - 9 | | N | N
N 1 | Ð | | | 10
10 | H | N = not analyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). | 1001 | fcont | in and | |------|-------|--------| | | | | | STATION | FONDF OS | CUTHION | HCH
ALPHA | HCH
BETA | HCH
DELTA | HCH
GAHHA | HEPTACHLOR | CHLOR | HEXA
CHLORO
BENZENE | | HION | HETHA
DITHIO | ME1 | CILLOF | MIRE) | (HOL | HATE | HITROFEN | |----------------------|----------|------------|--------------|-------------|------------------|--------------|---------------|-----------|---------------------------|-------|-------|-----------------|------|----------|-------|-------|----------|----------------------------| | 05.11.08 | -5 | ·50 | · 2 | -10 | · 5 | ·S | -5 | -5 | -2 | -10 | 00 | -50 | | -30 | -20 | | H | -10 | | 06.12.03 | H | N | Ñ | 14 | Ä | Ñ | N | i i | X | | Ħ | Ħ | | И. | · N | | H | | | 07.10.10 | -5 | - 50 | ٠2 | · 10 | ž | چَ . | ٠. | -5, | - 2 | -10 | DÓ | -50 | • | -30 | · 20 | | M | · 10 | | 11.12.01 | .5 | -50 | . 2 | - 10 | ·ž | ٠ž | . 5 | | ٠ž | -11 | 00 | -50 | | -30 | - 20 |) | H | - 10 | | 11.63.14 | H | H | N | , H. | Ñ | Ñ | · ú | Ň | Ñ | | ¥ | M | | Ħ | H | 1 | Ħ | н | | | | | | | - 2 | ٠ž | - 5 | -5 | - 2 | - 10 | DO . | -50 | | -30 | - 50 | ļ | N | • 10 • | | 13.52.16 | .5 | -50 | - 5 | . 10 | ٠. | ٠.٤ | | - | | | | - | | -30 | 20 | | u | - 10 | | 19.10.06 | ¥ .5 | -50 | ٠2 | - 10 | · 2 | ٠Z | -5 | - 5 | ٠S | - 10 | | -50 | | | . 20 | | N | · 10 | | 19.10.06 | | -50 | - 2 | - 10 | ٠z | . 2 | -5 | -5 | ٠ž | - 10 | | -50 | | -30 | | | N | -10 | | 19.10.07 | | -50 | . 2 | - 10 | ٠2 | - 5 | -5 | -5 | ٠Z | - 10 | | -50 | | -30 | - 50 | | | •10 | | 20.11.03 | | -50 | ٠ž | - 10 | ٠ž | ٠ž | -5 | -5 | ٠z | - 11 | 00 | -50 | | • 30 | - 20 | | 7 | -10 | | 20.11.03 | | -50 | ٠.5 | ,- 10 | ٠ž | ٠ž | -5 | -5 | ٠2 | - 11 | 00 | -50 | | -30 | 50 | | × | | | | | | | -10 | ٠Ş | ٠ž | .5 | 5 | <u>.</u> | | 00 | -50 | | :30 | :5 | Ď. | Ħ | -10 | | 20.11.36 | - 5 | -50 | ٠ż | | | | | | ·ž | | 100 | -50 | | .30 | . 5 | 0 | Ħ | - 10 <i>/</i> | | 20.11.36 | -5 | -50 | 2 | - 10 | ٠Š | ٠ż | - 5 | | | | 100 | -50 | | -30 | - 2 | | M | - 10 | | 23.12.10 | ٠5 | -50 | .5 | - 10 | - 2 | . 5 | -5 | •5 | - 2 | - | | | | | | | 11 | - 10 | | 24.47.15 | - 5 | -50 | -2 | - 10 | ٠2 | ·z | .5 | -5 | -2 | -1 | 100 | -50 | | - 30 | - 21 | | | - 10 | | 29.97.13
25.11.01 | -5 | -50 | . 5 | - 10 | . 2 | . 2 | | ٠, | -ž | | 00 | -50 | | -30 | . 21 | | Ħ | | | | | | . 2 | - 10 | . 2 | ٠, ٢ | : 5 | | . 2 | - 1 | 100 . | -50 | • | -30 | - 2 | 0 | Ħ | - 10 | | 37.20.22 | . 5 | -50 | | | | | | | <u>:</u> | | nen | nen n | - | bre. | TOTAL | PCHR | PENT | <u></u> | | SIATION | HONACIIL | TRA | | DHITE | ORGANO
ARSENI | | OXYCHLORDAN | ETHYL | METH | 17L | 1242 | 1248 1 | 254 | 1260 | PCB | -5 | CHLO | ROPHENOL | | 05.11.08 | - 30 | | ; | N | N | | -5 | -10 | • | 10 | -50 | | | -50
N | Þ | N. | | H
H | | 06.12.03 | 30 | , | | H | H | | N | . N | | Ħ | _# | , N | N | | | -5 | | H | | 09.10.10 | - 30 | | | H | 11 | | -5 | - 10 | • | 10 | -50 | | | -50 | D | | | | | 11.12.01 | -30 | | | M | W | | -5 | *10 | - | 10 | -50 | -50 - | | -50 | D | -5 | | H | | | | | | N | N | | Ň | 14 | | Ħ | 94 | M | M | N | 14 | Ħ | | * | | 11.63.14 | - 30 | 1 | | | | | | • 10 | | 10 | -50 | -50 - | 50 | -50 | D | ٠5 | | W | | 13.52.16 | N | • ! | 5 | Ħ | Ħ | | -5 | | | | | • • | | | D | .5 | | N | | 19.10.06 | - 30 | | 5 | Ħ | Ħ | | -5 | - 10 | | 10 | -50 | | | .50 | b | ٠Š | | Ä | | 19.10.06 | -30 | 1 | 1 | N | N | | -5 | - 10 | • | · 10 | -50 | | | -50 | - | -5 | | ü | | 19.10.07 | -30 | 1 | | н | н | | -5 | - 10 | - | - 10 | -50 | -50 - | | -50 | D | -5 | | <u></u> | | 20.11.03 | .30 | | B | 14 | N | | .5 | - 10 | | - 10 | -50 | | | -50 | D | .5 | | S | | | - 30 | | | М | H | | -5 | - 10 | | - 10 | -50 | -50 - | 50 | -50 | D | | | Th. | | 20.11.03 | | | ,
7 | N | ม | | . ś | - 10 | | - 10 | .50 | -50 - | 50 | -50 | D | .5 | | N
 | | 20.11.36 | | | - | Pr. | H | | . ś | 10 | | - 10 | -50 | -50 - | 50 | -50 | D | - 5 | | K | | 20.11.36 | | | 5 | H | N | | -5 | - 10 | | - 10 | -50 | | 50 | -50 | D | - 5 | | N | | 23.12.10 | -30 | | 5 | N | N | | -, | * 10 | | | | | | | | -5 | | v | | 37.20.22 | -30 | • | 5 | H | H | | -5 | - 11 |) | -10 | -50 | -50 · | 50 | -50 | D | -, | | <u>" '</u> | | \$1A110H | rent | IIANE PIIE | HKAPIO | 11 P110 | RATE PI | RONAHI | DE RONNEL | S I HAZ 1 | HE STR | DBANE | TCE | TETRA | DIFC | ON TO | APHEN | :
 | | PEAKS>5PPB
X ETHYL ETHE | | | - 151 | | ·25 | | -60 | | 50 -5 | | 1 | -200 | N | -2 | 20 | | - 100 | | | R , | | 05.11.00 | | N . | Ñ | | N | | N N | | | - 50 | v | • | N | | N | | | H | | 06.12.03 | | | - 25 | | · 60 | _ | 50 -5 | | i | - 200 | | . : | 20 | | - 100 | | | Ħ | | 109.10.10 | | | -25 | | -60 | | 50 -5 | . 2 | | - 200 | - 2 | | 20 | | - 100 | | | N | | 11.12.0 | | | - K | | | • | и .
И | | H I | 14 | ä | - | N | | H | | | H | | 111.63.14 | | H | | | H | | | | | | .,, | | 20 | | -100 | | | M ' | | 513.52.10 | 5 - 15 | 0 | · 25 | | -60 | • | 50 -5 | | . | - 200 | Ħ | | | | | | | - | | 5 19 . 10 . 00 | s · 15 | n | - 25 | | - 60 | | 50 - 5 | ٠2 | 0 | - 200 | Ħ | | 20 | | - 100 | | | Ħ | | 5 19 . 10 . 00 | | | - 25 | | . 60 | | 50 -5 | . ž | | -500 | . H | | 20 | | 250 | | | Ħ | | 519.10.0 | | | . 25 | | -60 | | 50 -5 | ٠ž | | - 200 | Ħ | | 20 | | -100 | | | Ħ | | | | | . 25 | | -60 | | 50 - 5 | جَ . | | - 200 | N | | 20 | | -100 | | | H | | 520.11.0 | | | - 25 | | -60 | | 50 -5 | . 2 | | -200 | Ħ | | \$0 | | · 100 | | | ¥ | | 520.11.0 | | | - 25 | | -60 | | 50 -5 | | | -200 | N | | 20 | | -100 | | | и . | | 520.11.3 | | | | | -60 | | 50 -5 | | | - 200 | 1 | | 20 | | - 100 | | | H | | 520.11.3 | | | . 25 | | | | 50 -5 | | | - 200 | ï | | 50 | | - 100 | | | ₩ . | | | 0 -1: | U | · 25 | | · 60 | | | | | | ? | | 20 | | Íöö | | | M . | | 523.12.1
637.20.2 | | | · 25 | | -60 | | 50 -5 | | N | -2001 | | | | | | | | | N = not mnalyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). | 1081 | front | inuedi | |------|-------|--------| | HOTTATE | # PEAKS >5PPB
9 6% ETHYL
ETHER | # PEAKS >SPPB
8 15% ETHYL
ETHER | 2,4-D
ACID | 2,4-t
15080 |)
JIYL ESIER | 2,4-0
H-BUTYL ESTER | 2,4-0
ISOPROPYL ESTER | TETRA
CHLORO'
PHENOL | DICHLORO
BENZO
PHENONE P, | |------------|--------------------------------------|---------------------------------------|---------------|----------------|-----------------|------------------------|--------------------------|----------------------------|---------------------------------| | 105.11.00 | N | N | n | | -100 | 100 | - 100 | H | H | | 106.12.03 | ii | N | N | | N | Ħ | N | H | H 11 | | 07.10.10 | N | ¥ | N | | - 100 | - 100 | - 100 | N | N N | | 11.12.01 | Ü | N | H | | - 100 | - 100 | 100 | × | | | 11.63.14 | ii | H | . N | | H | W | . и | H | H | | 13.52.16 | N. | N | N | ř., | -100 | - 100 | -100 | 17 | . # | | 19.10.06 3 | N | N - | N | | - 100 | - 100 | - 100 | Ħ | , II | | 19.10.06 # | n | N | N | | -100 | -100 | - 100 | 11 | 'n | | 19.10.07 | Ü | Ä | Ä | | - 100 | - 100 | - 100 | H | N | | 20.11.03 🛠 | Ü | si si | Ñ | | - 100 | - 100 | - 100 | Ħ | N | | 20.11.03 | H · | Ņ . | W | | - 100 | - 100 | - 100 | Ħ | H | | 20.11.36 | Ħ | N | H | | - 100 | -100 | - 100 | H | H | | 20.11.36 | N | Ħ | N | ٠, | - 100 | -100 | - 100 | N | H | | 23.12.10 | 11 | N | И | | - 100 | 100 | - 100 | Ħ | 1 | | 37.20.22 | U | N | w | | 100 | -100 | - 100 | W | H | H = not mnalyzed. = = below indicated detection limit. D = below detection limit (no limit indicated). 1982 ORGANIC CHEHICALS IN FISH (ppb, wet weight) | STATION | SIAF | 10H HA | ME | | | | COMMON
NAME | | TISSUE
TYPE | SAMP
DAT | LE | LDRIN | ATRA | ZINE | BENE | FIN (| CARBA | | CARBO
PHENO
THION | | EC C | HLORBEHS 10 | |------------------------|-----------------|-----------------------|-------------|----------------|-------|-------------|----------------|-----------|-----------------------------|---------------|----------------------|---------------|-------------|-------------|-------------|--------------|------------|------|-------------------------|------|------|----------------------------| | 519.10.06
519.10.07 | | | |
| * | | ITE CATE | | FLÉSH
FLESH | | | -5 | ·; | 20 | .9 | | -40 | | - 20 | | -5 | ·\$ | | STATION (| ALPHA
MLORDE | | CIS
LORD | ANE CI | GAHNA | HE CH | TRANS | TOTAL | CHLDRONE | B CHL | OR D/ | ACTHA | | 00 | D DOD | DDE | DDE | DDHS | DOHU | 901 | 001 | | | 519.10.06 | -5 | | 5. | | | ···· | -5.0 | 17.0 | -30 | -1 | | 15 | · · · | | 34 | | · | | | | | | | 519.10.07 | .5 | | - 5 | | .5 | | .5.0 | D | -30 | -1 | • | .5 | | | 1 11 | | | | - 15 | | | 314 | | STATION | DEF D | 1AZ FR | OH D | ICHLO
ENTHI | DIC | JO 101 | DIELDRI | N DIPHENA | | | ENDO
SULFAI | 11 N | ENDO | I H | OTAL | END | | | | ITRO | | HON | | 519.10.06 | | .50 | | - 10 | - 10 | 00 | ٠5 | -50 | -! | 1: | H | | N | | D | - 15 | | -20 | _ | 10 | | 300 | | 519.10.07 | 300 | -50 | | · 10 | - 10 | 00 | .5 | - 50 | • ! | 5 | N | | • | ė | Ď | - 15 | | - 20 | _ | | | 300 | | STATION | FONOT | os GUI | | | | HCH
DELT | ИСП
А БАННА | HEPTACH | LOR HEPT
CHLOR
EPOXII | CHI | EXA
LORO
NZENE | HAL | ATHIO | | TA
H10N | HETH
OXYC | | HIRI | | LTHA | TE . | NITROFEN | | 519.10.06 | .5 | - 2 | 0 | .2.0 | - 10 | ·z | ٠2 | -5 | .5 | - 2 | .0 | - 10 | 00 | -31 | 20 | -30 | | -20 | | _ | - | - 10 | | 519.10.07 | -5 | . 5 | O | ٠2 | - 10 | . 2 | ٠2 | -5 | -5 | - 2 | 2.0 | - 10 | | -30 | | -30 | | -20 | , | | | - 10 | | STATION | C15
NOHACII | LOR M | TRAN | S (| HITE | | O D | XYCKLORDA | NE PARAT
ETHYL | | PARATI
METHYL | | PCB
1242 | PC8
1248 | PCB
1254 | PC8 | 101
PCB | AL P | | PEN | I A | HENOL | | 519.10.06 | -5 | | 12.0 |) | N | N | | .5.0 | • 10 | 0 | •10 | | | -50 | | | 110 | | .5 | | N | | | 519.10.07 | ·5 | | -5.0 |) | Ħ | H | | .5 | -1 | 0 | - 10 | , | -50 | | | -50 | | _ | 5 | | N | | | STATION | PERTI | IAHE I | HENK | APTON | PHOR | ATE P | RONAHIDI | E RONNEL | . SIHAZ | INE ! | BTROBA | | | | RADIF | | | | <u> </u> | # 5 | EAKS | i>5PPB
IYL ETHER | | 519.10.06 | - 150 | , | .2 | 5 | -6 | 0 | · 20 | .5 | * | | · 20 | 0 | # | | 20 | | - 100 | _ | | | 1 | | | 19.10.07 | - 150 | | . 5 | 5 | .6 | 0 | . 20 | -5 | Ħ | | - 20 | 0 | Ħ | | 20 | | - 100 | • | | | 0 | | | STATION | อ | PEAKS
6% ET
HER | | PB | | 5% E1 | >SPPB
HYL | | 2,4-D
ISOBUTYL | . ESTE | 2
R H | ,4·0
-BUT1 | rL ESI | TER | 2,4
150 | -D
PROPY | L ESI | ER | TETE
CHLC
PHER | RO | DIG | CHLORO
NZO
ENONE P,P | | 19.10.06 | | 0 | | | | 0 | | н | • | 10 0 | | | -100 | | | | 100 | | | H | | H | | 519.10.07 | | 0 | | | | 0 | | N | | 100 | : | | - 100 | | | | 100 | | | H | | N ₁ | N = not mustyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). ^{*} NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA 1983 ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATION | STATE | ON NAME | | | COMMON | | | ISSUE
IYPE | SAMPLE
DATE | ALDRIN | AİR | IB BHISA | ENEFIN | CARB | PH | R80
ENO
10N1N | CDEC | |--|------------------|----------------------------------|-------------------|---|--|-----------------------|-------------------------------|---------------|----------------|-------------------|-------|---------------------------|---------------|--------------|---------------------------|---------------------|--------------------------| | 105.32.00 | HATON | CREEK | | | STEELH | EAD RAINBO | N TROUT | FLESH | 83-09-2 | 2 # | | H | H | N | | H | H | | 519.10.06 | | | | | | L CATFISH | | | 83-08-10 | | | H | ٠5 | | 1 | - 20 | -5 | | 519.10.06 | SULTER | BYPASS # | ŀ | | | CATFISH | | FLESH | 83-08-11 | .5 | | H | ٠5 | • | ı | - 20 | 45 | | 637.20.22 | SUSAN | R / SUSA! | IVILLE | | SUCKER | , | | FLESH | 83 · 10 · 1 | -5 | | H | -5 | H | | - 20 | . \$ | | STATION | | ALTHA
E CHLORDI | CIS
ENE CHI | | SAMMA
SHLORDENE | TRANS
CHLORDANI | | | EB CHLO | | HAL | D·D DD
O, | | 00E
P 0,P | 00E 00 | | 100 UHO
4,0 4, | | 105.32.00 | 1 14 | Ħ | <u> </u> | N | н | Ħ | H | | ١ | H | Ħ | | | H H | N | H | H H
18 12 | | 519.10.06 | | -5.0 | | 8.4 | ٠5 | -5.0 | 20.4 | - 30 | | | - 5 | | | 0 -10 | | | -15 -10 | | 519.10.06 | | .5.0 | | ·5.0 | ٠5 | -5.0 | 6.3 | · •30 | | 10 | • 5 | H • 1 | . – | | | | | | 637.20.22 | -5
 | -5.0 | | ·5.0 | -5 | ·5.ô | D | - 30 | •: | ło | -5 | N -1 | 0 -10 | - 10 | -5.0 - | 30 | 15 - 10 | | STATION | | DIAL DEF | DTAZIH | ION DICHL
FERT | | FOL DIELDA | IIN DIPKE | | EHDO
SULFAN | ENDO
I SULFAI | | EHDO
SULFAN
SULFATE | ENDO | | IRIN ETH | | ENTTRO
HION | | 105.32.00 | N | N N | N | N | N | H | 'n | | N | N | | N / | N | 1 | 1 | 1 | N | | 519.10.06 | 100 7 | 94.0 N | -50 | - 10 | - 100 | .5.0 | Ħ | | 8.3 | - 10 | | - 15 | 6.3 | - 15 | - 20 | • | - 10 | | 519.10.06 | -10 2 | 14 O.SS | ·50 | - 10 | - 100 | -5.0 | W | | -5.0 | Ħ | | N | D | - 15 | | , | - 10 | | 37.20.22 | - 10 | D N | -50 | - 10 | - 100 | .5.0 | .# | | -3.0 | × | | N | D | - 15 | - 20 |) | -10 | | STATION | TENTHIO | и гоного: | SCUTH | ION HEH
ALPHA | HCH H | II HCII
ELTA GAMMA | HEPTACH | CIII | | LORO | ALAT | HION ME | THION | OXYCH | | EX HO | LIHATE | | 105.32.00 | H | N | N | н | H | N N | N | | N | N. | Ħ | | N | N | | N | N | | 19.10.06 | 11 | -5 | н | -2.0 | ·10 - | .0 -2.0 | ٠5 | | - | 2.0 | H | | Ħ | .30 | | | R i | | 19.10.06 | W | - 5 | N | 5.0 | - 10 - | 2.0 -2.0 | -5 | | - | 2.0 | H | | H | - 30 | | | H | | 37.20.22 | Ħ | .5 | H | .2.0 | · 10 · 2 | .0 -2.0 | · 5 | | .5 | 5.0 | , н | | N | .30 | 2 | | | | STATION | NETROFE | HONACIIL | TRA
OR NON | | MITE ORG | ANO O | KYCHLORD/ | HE PAR | | PARATHI
METHYL | DN PI | 242 1248 | PCB
3 1254 | 1260 | | | | | 05.32.00 | H | H | | H | N | N | N | | K | Ħ | | H N | N | | H | ₩,
•5 | | | 17.10.06 | - 10 | .5 | | 12.0 | H | N | .5 | | - 10 | -10 | | 50 -50 | | -50 | 64
D | .5 | | | 19.10.06 | - 10 | .5 | | 6.3 | H | N | ٠ <u>5</u> | | - 10 | -10 | | 50 -50 | | -50 | _ | - | | | 37.20.22 | .10 | .5 | | .5.0 | N | N | -5 | | -10 | •10 | | 50 -50 | | 50 | | ·5 | | | | PENTA | | THANE | PHENKAPI | OH PHORA | TE PROHAM | DE RONNE | L SIMA | ZIHE SI | ROBANE ' | ICE 1 | ETRADII | ON TO | XAPHEI | NE # PE | AKS>51
ETHYL | FB ETHER | | STATION | CHEOKON | | | | | N | M | | • | N | Ħ | N | | H | | H | | | STATION | N N | | N | N | | | -5 | 1 | ł | - 200 | H | · 20 | | 890 | | M | | | STATION
05.32.00
19.10.06 | N
N | | 150 | - 25 | -60 | | | | | | | | | -100 | | N | | | STATION
05.32.00
19.10.06
19.10.06 | N
N
H | | 150
150 | - 25
- 25 | -60
-60 | i ii | - 5 | i | 4 | 200 | Н. | 50 | | | .' | | | | | N
N | | 150 | - 25 | -60 | i ii | | | 4 | - 200
- 200 | H . | 20 | | - 100 | <i>:</i> | N | | | STATION
05.32.00
19.10.06
19.10.06 | N
N
N | EAKS >5P | 150
150
150 | - 25
- 25
- 25 | -60
-60
-60
8912<-8 | i ii | - 5 | · 1 | ₹
 | - 500 | | | ···· | -100 | TETRA
CHLORO
PRENOL | DIC | HLORO
IZO
NONE P,P | | STATION 05.32.00 19.10.06 19.10.06 37.20.22 | H
H
H
H | EAKS >5P | 150
150
150 | -25
-25
-25
-25
PEAK
P 15X (| -60
-60
-60
8912<-8 | 'Z,4-D | -5
-5
2,4-D | · 1 | ₹
 | - 500 | | ·20
7,4-0 | ···· | -100 | CHLORO | DIC | 120 | | STATION
05.32.00
19.10.06
19.10.06
37.20.22 | H
H
H
H | EAKS >SP
6% ETHYL
1ER | 150
150
150 | -25
-25
-25
-25
PEAK
15% (
ETHER | -60
-60
-60
5 >50PB
ETHYL | Z,4-D
ACID | 2,4-D
ISOBUTYL | . ESTER | ₹
 | -200
TYL ESTI | | ·20
7,4-0 | YL ES | -100 | CHLORO
PHENOL | DIC | IZO
NOME P,P | | STATION 05.32.00 19.10.06 19.10.06 37.20.22 STATION 05.32.00 | H
H
H
H | EAKS >SP
5% ETHYL
IER
N | 150
150
150 | -25
-25
-25
-25
PEAK:
15%
ETHER | -60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | 7,4-D
ACID | -5
-5
2,4-0
ISOBUTYL | . ESTER | ₹
 | 200
TYL ESTI | | ·20 | YL ES | -100 | CHLORO
PHENOL | DIC | NONE P,P | N = not analyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). 1983 ORGANIC CHEMICALS IN SOIL, SEDIMENT OR WATER SAMPLES (ppb, wet weight) | STATION
NUMBER | STATION
NAME | | | TYPE | SAMPLE
Date | | CHLOR-
BENSIDE | ALPHA ·
CHLORDENE | CIS:
CHLORDANE | |-------------------|---|-----------------|---------|----------|----------------|--------|-------------------|----------------------|-------------------| | 513.52.01 | CLEAR LAKE/LO | WER LAKE | | SED | 83-08-17 | | N N | И | | | 513.52.15 | CLEAR LAKE/SU | ILFUR BANK MINE | | SED | 83-08-17 | | N | N | N | | 513.52.16 | CLEAR LAKE/RA | TILESNAKE ISLE | | SED | 83-08-17 | | N | N | N | | 513.52.19 | CLEAR LAKE/RO | | | SED | 83-08-16 | | N | H | N | | STATION | GANMA | TRANS | OXY | CIS | TRANS | TOTAL | CHLOR | | | | NUMBER | CHLOR | CHLOR | CITLOR | NONA | NONA | CHLOR | PYRIFOS | DAC | OP | | | DENE | DANE | DANE | CHLOR | CHLOR | DANE | | THAL | 1000 | | 513.52.01 | N | H | N | N | H | N | N | N | H | | 513.52.15 | H | N | N | N | N | N | N | N | 'n | | 513.52.16 | N | N | N | N | N | N | Ń | N | Ñ | | 513.52.19 | N | N | N | R | N | Ñ | H | N | Ñ | | STATION | rr | OP | ΡÞ | PP | PP | OP | PP | TOTAL | DIA | | NUMBER | מססי | 'DOE | 'DDE | ODMU | DDMS | TOOT | 1001 | DDT | ZIHON | | 513.52.01 | , N | N | N | N | N | Ħ | И | N | N | | 513.52.15 | Ħ | N . | N | H | " N | H | H | N | H | | 513.52.16 | Н | N | N | N | N | N | N | N | H | | 513.52.19 | N | N | N | N | W | N | · N | N | Ħ | | STATION | | ENDO | ENDO | Elibo | TOTAL | | | | | | NUMBER | DIELDRIN | SULFAN | SULFAN | SULFAN | ENDO | | ALPHA | BETA | GAHHA | | | | 1 | 11 | SULFATE | SULFAN | ENDRIM | HCH | HCH | HCH | | 513.52.01 | N | N | -1.0 | -2.0 | D | H | N | N | N | | 513.52.15 | N | N | -1.0 | -2.0 | D |
W | N | N | W | | 513.52.16 | N | N | -1.0 | -2.0 | D | H | N | 11 | K | | 513.52.19 | N | N | -1.0 | -2.0 | D | N | H | H | N | | STATION | *************************************** | HEPTA | HEXA | | | | | ~~~~~ | | | NUMBER | DELTA | CHLOR | CHLORO | PCB | PCB | PCB | TOTAL | PARA | AXOT | | | HCH | EPOXIDE | BENZENE | 1242 | 1248 | 1254 | PCB | THION | PHEN | | 513.52.01 | N | н | N | H | N | N | N | N | N | | 513.52.15 | N | N | Ħ | ï | Ĥ | Ň | Ü | N. | N N | | 513.52.16 | N | N | Ħ | ,,
14 | ห | N | Ä | N | N
N | | 513.52.19 | 11 | N | Ĥ | Ñ | พ | Ä | Ñ | · · " | × | N = not analyzed. SED = sediment. ^{· =} below indicated detection limit. COL = adsorbent resin column. D = below detection limit (no limit indicated). H2O = water sample. 1984 ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATION | STAT | ION NAME | | | MHON
SHANE | | | TISŠUE
TYPE | SAMPLE
DATE | ALDRIN | ATRAZI | HE | BENE | FIR | CARBAR | | CARBO
PHENO
THIONI | • | DEC | |---|---|--|---|--|--|--|--------------------------------|---|--|---|---------------------------------------|--|--|---|---|---|--------------------------------------|--------------|-----| | 109.10.10 | HAD | RIVER | | S1 | ULPIN | | | FLESH | 84-08-27 | N | H | | ĸ | | H | | N | | H | | 107.10.10 | | RIVER | | | JCKER | | | FLESH | 84-08-27 | W | H | | 11 |) | H | | H | | H | | 111.12.01 | | R / SCOTTA | | | RITJU | | | FLESH | 84-08-28 | -5 ~ | N | | -5 | } | 14 | | - 50 | | ٠5 | | 517,10.06 | | ER BYPASS # | | | INNHEL C | ATFISH | | FLESH | 84-08-02 | -5 | H | | . 5 | • | N | | - 20 | | . 5 | | 520.11.03 | | SA DRALH/KHI | CUTE LAND | | RP | | | FLESH | 84-08-14 | - 5 | × | | - 5 | | H | | - 20 | | ٠, | | 520.11.03 | | SA DRAIN/KNI | | | | | | FLESH | 84 - 08 - 14 | ٠,5 | Ĥ | | - 5 | ; | N | | - 50 | | . 5 | | | | SA DRAIN/KHI | | | | | | FLESH | 84-08-14 | - 5 | 1 | | - 5 | , | H | | - 50 | | . 5 | | | | . RIVER | GHIS CHAO | | | | | FLESH | 84 · 07 · 16 | 5 | 11 | | - 9 | 5 | N | | - 50 | | | | 526.42.02
526.42.02 | | | | | JCKER
JCKER | . • | | FLESH | 84-07-16 | -5 | H | | 5 | 5 | H | | - 50 | | | | · ··························· | CHLOR | ALPHA | CIS | GAMMA | TRAN | | | | EB CHLOR
PYRIFOS | DACTHAL | | DDD
D, P | 000
P,P | | DDE D | | DDHU P.P | | | | STATION | BENSI | DE CHLORDENE | CHLORDANE | CIILORDE | HE CHEC | JRUANE | CHLOX | JAKE | PIXITUS | | | | -,, | | | <u></u> | | | | | 107.10.10 | 11 | H | H | N | | N | H | H | H | N. | H | N | Ħ | Ħ | ĸ | H | M | H | | | 107.10.10 | N | H | 11 | N | | N | Ħ. | H | Ħ | H | H | N | N | × | N | N | N | H | | | 111.12.01 | | -5.0 | -5.0 | . 5 | | 5.0 | D | -75 | - 10 | 5.0 | ••• | | | · 10 | -5.0 | | | - 10 | | | 519.10.06 | - 5 | .5 | 14.0 | - 5 | | 3.5 | 49.8 | -75 | - 10 | -5 | N : | 55. | 140 | 19 | 410.0 | -30 | - 15 | - 10 | | | | -5 | .5 | -5.0 | - 5 | | .0 | n n | - 75 | -10* | -5 | N S | 15 | 62 | 17 | 360.0 | - 30 | 22 - | 10 | | | 520.11.05 | | | | -5 | . 5 | | 21.0 | -75 | - 10 | .5 | | | | 10 | 300.0 | | 18 - | | | | 520.11.03 | | -5 | 7.0 | -5 | | .8 | 40.9 | -75 | - 10
- 10 | 5 | | | | 19 | 420.0 | | 23 . | | | | 520.11.03 | | - 5 | 9.2 | | | | | | | - | | - | | | | | _ | - 10 | | | 526.42.02 | ٠5 | - 5 | .5.0 | · <u>\$</u> | | .0 | D | - 75 | - 10 | - 5 | N -1 | | | 10 | 8.9 | | | - 10
- 10 | | | 526.42.02 | ٠5 | -5 | -5.0 | -5 | • • • | .0 | D | -75 | -10 | -5 | N -1 | | -10 - | 10 | 8.9 | . 30 | •15 | . 10 | | | STATION | | TOTAL DEF DI | | 111108 | COFOL D | IELORII | N DIPH | | EHDO E
SULFAN 1 S | HDO
ULFAN 11 | ENDO
SULFA
SULFA | H E | HDO | | RIN ET | HION | FENT | | | | 107.10.10 | · 11 | N N ' | | н | N. | н | | н | м | H | | K | 11 | | N | N | | H | | | 107.10.10 | 17 | N N | Ĥ | Ä | W | Ä | | N | Ä | Ä | | N. | . # | • | Ä | N. | | M | | | 111.12.01 | | D N | -50 | - 15 | - 100 | -5.0 | | N | .5 | Ä | | 11 | Ö | | · 15 | -20 | - † | ñ | | | 519,10.06 | | 640.0 N | -50 | | | | | | - | -70 | -8 | | 26.0 | | - 15 | -20 | - ; | | | | | | 040.0 N | - 30 | · 15 | 190 | 15. | U | N | 26.0 | | | | | | | | | | | | 520.11.03 | -10 6 | 476.0 H | -50 | - 15 | · 100 | 5.4 | • | Ħ | 7.7 | -70 | - 85 | | 7.7 | | 15 | - Z0 | -1 | | | | 520.11.03 | -10 | 415.0 N | -50 | - 15 | - 100 | 7.1 | 7 | H | 7.B | -70 | -6 | 5 | 7.8 | , | - 15 | - 20 | •1 | 0 | | | 520.11.03 | 32 6 | 652.0 N | -50 | - 15 | - 100 | -5.0 |) | Ħ | 14.0 | • 70 | - 6: | 5 | 14.0 | , . | 15 | - 50 | - 1 | Ü | | | 526.42.02 | | 8.9 N | -50 | - 15 | - 100 | -5.0 | | N | -5.0 | H | ٠, | N . | D | | 15 | - 20 | -1 | θ. | | | 526.42.02 | | 8.9 N | -50 | - 15 | - 100 | -5.0 | | H | -5.0 | Ĥ | | N | D | | 15 | - 20 | -1 | 0 | | | | | | | | | ***** | HEDIA | CHLOR H | EPIA HEX | A HALI | ATHION | | | HETH | | IREX | MOL 1 NA | ITE | | | STATION | FERTIL | ION FONUTOS | | EPHA BET/ | HICH
A DELTA | | ner ra | El | HLOR CHL | | | | 1001 | | HLOR | | | | | | | rentiii
N | 10N FOHUTOS | |
 | | | El | HLOR CHL | | N | | H | • | N | Ħ | , N | - | | | 109.10.10 | | | Al | PIIA BET | A DELIA | GAMMA | | CI
EI | HLOR CHL
POXIDE BEN
N | ZENE | | | H
H | • | H
N | Ħ | | - | | | 109.10.10
109.10.10 | H | 11 | N
H | H H | N DELTA | GAMHA
H | N-man . | N CI | HLOR CHL
POXIDE BEN
N
N | ZENE
H | N | | H | | N
N
15 | 10 | H
H
N | | | | 109.10.10
109.10.10
111.12.01 | H
H | 1)
H | N
H
H - | H H | N DELTA | GAMMA
N
N | • | EI
N
H | HLOR CHL
POXIDE BEN
N
N | ZENE
H
N
.0 | N
N | | H
H | • | N
N
15 | Ħ | , N | <u> </u> | | | 109, 10, 10
109, 10, 10
111, 12, 01
519, 10, 06 | Н
Н
И | 11
N
-5
-5 | N
H
H | H H N 2.0 -10 | R
N
-5 | #
#
#
-2.0 | • | EI
N
N
K
S | HLOR CHL
POXIDE BEN
N
N
-5 -2 | ZENE
H
N
. D | N
N
N | | H
H | | N
N
15 | 10 | H
H
N | | | | 109, 10, 10
109, 10, 10
111, 12, 01
519, 10, 06
520, 11, 03 | H
H
M
M | 11
N
-5
-5 | N
H
H
N | H H H 2.0 -10 2.0 -10 2.0 -10 | N -5 -5 -5 | # # -2.0
-2.0 | • | EI
N
N
S
S | HLOR CHL
POXIDE BEN
N
N
-5 -2 | ZENE
N
. O
. O | N
N
N | | H
H | ·
-1 | N
N
15
5 | - 10
- 10 | H
H
N | - | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03 | И
И
И
И
И | N
N
-5
-5
-5 | N
H
H
N
N | H H H 2.0 -10 2.0 -10 2.0 -10 2.0 -10 | N N -5 -5 -5 -5 | H H -2.0 -2.0 -2 | | N N S S S S S S S S S S S S S S S S S S | N N -5 -2 -5 -2 -5 -2 | ZENE
H
I.O
.O
.O | N
N
N | | H
H | ·
-1
-1 | N
N
15
5 | -10
-10
-10 | H
H
N | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03 | H
H
H
H
H
H | 1)
N
-5
-5
-5 | N H | N H N 2.0 -10 2.0 -10 2.0 -10 2.0 -10 2.0 -10 2.0 -10 | R
N -5
-5
-5 | GAMMA # # -2.0 -2.0 -2 | • | N H 5 5 5 5 5 5 5 5 5 | N N S S S S S S S S S S S S S S S S S S | ZENE
H
N
.0
.0
.0 | N
N
N | | H
H | ·
·1
·1
·1 | N
N
15
5
5 | . 10
- 10
- 10
- 10 | H
H
H
H | | | | 109,10.10
109,10.10
111.12.01
519,10.06
520.11.03
520.11.03
520.11.03 | И
И
И
И
И | N
N
-5
-5
-5 | N N N N N N N N N N N N N N N N N N N | H H H 2.0 -10 2.0 -10 2.0 -10 2.0 -10 | N N -5 -5 -5 -5 | H H -2.0 -2.0 -2 | • | N N S S S S S S S S S S S S S S S S S S | N N -5 -2 -5 -2 -5 -2 | ZENE
N
N
.0
.0
.0 | N
N
N
M | | H
H | ·
·1
·1
·1
·1 | N
N
15
5
5
5 | 10
-10
-10
-10
-10 | H
H
H
H | | | | 109, 10, 10
109, 10, 10
111, 12, 01
519, 10, 06
520, 11, 03
520, 11, 03
520, 11, 03
526, 42, 02 | H
H
H
H
H | 11 N .5 .5 .5 .5 .5 .5 .5 .5 .5 | N N N N N N N N N N N N N N N N N N N | N N N N 2.0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1 | R
N -5
-5
-5
-5 | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | | N H S S S S S S S S S S S S S S S S S S | HLOR CHL POXIDE BEN N N -5 -2 -5 -2 -5 -2 -5 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 | ZENE N N .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | H
H
H
H
H
H
H | H
H
H
H
H | H
H
H
I
I
I
I
V | - 1
- 1
- 1
- 1
- 1 | N N N 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 | H
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
520.11.03
520.42.02
526.42.02 | H
H
H
H
H | 11 N .5 .5 .5 .5 .5 .5 .5 .5 .5 | N N N N N N N N N N N N N N N N N N N | N N N N 2.0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1 | R N -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | | N H S S S S S S S S S S S S S S S S S S | HLOR CHL POXIDE BEN N N -5 -2 -5 -2 -5 -2 -5 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 -7 -2 | ZENE H N .0 .0 .0 .0 .0 .0 .0 .0 .0 | N N N N N N N N N N N N N N N N N N N | H
H
H
H
H | H H H H H H H H H H H H H H H H H H H | -1
-1
-1
-1
-1
-1
PCB
1260 | H N N N N N N N N N N N N N N N N N N N | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | H
H
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
520.11.03
526.42.02
526.42.02 | H
H
H
H
H
H
H
H
TROF | 11 N -5 -5 -5 -5 -5 -5 -5 -5 | N N N N N N TRANS | N N N N 2.0 -10 2.0 -1 | N N -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | ACHFOS | N H S S S S S S S S S S S S S S S S S S | HLOR CHLIPOXIDE BEN N N -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 | ZENE N N .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .1 .0 .1 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | N N N N N N N N N N N N N N N N N N N | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | H H H H H H H H H H H H H H H H H H H | -1
-1
-1
-1
-1
-1
PCB 1260 | H
N
15
5
5
5
5
5
5
5
7
7
7
7
8
8
8
8
8
8
8
8 | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | H
H
H
H
H
H
H
H | | | | 109, 10, 10
109, 10, 10
111, 12, 01
111, 12, 01
520, 11, 03
520, 11, 03
526, 42, 02
526, 42, 02
51A110N | H
H
H
H
H
H
H
H
H
H
TROF | 1) N -5 -5 -5 -5 -5 -5 -5 -5 -8 HONACHLO | N H H H H H H H H H H H H H H H H H H H | N N N N N N N N N N N N N N N N N N N | N N -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | ACHFOR | N H S S S S S S S S S S S S S S S S S S | HLOR CHLIPOXIDE BEN N N N C C C C C C C C C C C C C C C C | N N O O O O O O O O O O O O O O O O O O | N N N N N N N N N N N N N N N N N N N | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | H H H H H H H H H H H H H H H H H H H | -1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
- | H
N
55
55
55
TOTAL
D PCB | N -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | H
H
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
520.11.03
526.42.02
510.10
510.10
510.10
510.10 | H
H
H
N
N
H
H
H
TROF | N N .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 | N H H H H H H H H H H H H H H H H H H H | H H H H H 2.0 - 10 2.0 - 10 2.0 - 10 2.0 - 10 2.0 - 10 2.0 - 10 2.0 - 10 3.0
- 10 3.0 - 10 3. | R N -5 -5 -5 -5 -5 -5 -5 -7 ORGANO ARSENIC | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | ACHFOS | CI EI N H S S S S S S S S S S S S S S S S S S | HLOR CHLIPOXIDE BEN N N -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 -7 -7 -2 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 | N N O O O O O O O O O O O O O O O O O O | N N N N N N N N N N N N N N N N N N N | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | H H H H H H H H H H H H H H H H H H H | -1
-1
-1
-1
-1
-1
PCB 1260 | H
N
15
5
5
5
5
5
5
5
7
7
7
7
8
8
8
8
8
8
8
8 | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | H
H
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
520.11.03
526.42.02
51A110N
109.10.10
109.10.10 | H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H | N N N -55 -55 -55 -5 HONACHLO N N N -55 -7.3 | N H H H H H H H H H H H H H H H H H H H | N N N N N N N N N N N N N N N N N N N | N N -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | YCHLOS
H
N
.5 | CI EI N M M 5 5 5 5 5 5 5 5 5 E T ROANE PA | HLOR CHL
POXIDE BEN
N N N N N N N N N N N N N N N N N N N | ZEME H N .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | N N N N N N N N N N N N N N N N N N N | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | PCB 1254 H M 50 93 | -1
-1
-1
-1
-1
-1
PCB
1266
H W | H N 5 5 5 5 5 5 5 5 5 7 101AL D PCB H N D PCB 93 | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | H
N
N
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
526.42.02
526.42.02
51A110N | H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H | N N S S S S S S S S S S S S S S S S S S | N | N N N N N N N N N N N N N N N N N N N | N N -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | YCHLOR
N
N
-5
-5.6 | CIEL N H H S S S S S S S S S S S S S S S S S | HLOR CHLIPOXIDE BEN N N N N N N N N N N N N N N N N N N | ZENE H N .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | N N N N N N N N N N N N N N N N N N N | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | PCB 1254 N N N N N N N N N N N N N N N N N N N | -1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-50
-50 | N N N N N N N N N N N N N N N N N N N | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | H
H
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
520.11.03
526.42.02
SIATION
109.10.10
109.10.10
111.12.01
519.10.06
520.11.03 | H H H H H H H H H H H H H H H H H H H | N N N S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N S S S S S S S S S S S S S S S S S S | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | YCHLON | CIEL N R R S S S S S S S S S S S S S S S S S | HLOR CHL
POXIDE BEN N N -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 RATHION PA HYL ME N -10 -10 -10 | ZENE H N .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | N N N N N N N N N N N N N N N N N N N | TO 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | PC8 1254 H # 750 93 -50 80 | -1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-50
-50
-50 | H N 15 5 5 5 5 5 5 5 5 5 6 7 TOTAL D PCB H H D PCB 93 0 134 | N -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | H
N
N
H
H
H
H | | | | 109.10.10 109.10.10 111.12.01 519.10.06 520.11.03 520.11.03 520.11.03 526.42.02 STATION 109.10.10 109.10.10 11.12.01 11.12.01 11.12.01 120.11.03 120.11.03 | H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H | N N S S S S S S S S S S S S S S S S S S | N H H H H H H H H H H H H H H H H H H H | N N N N N N N N N N N N N N N N N N N | N N N S S S S S S S S S S S S S S S S S | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | YCHLOR
N
N
.5.6.6. | CIEL N N N N S S S S S S S S S S S S S S S S | HLOR CHL POXIDE BEN N N N S -5 -2 -5 -2 -5 -2 -5 -2 -7 -2 -7 -7 -10 -10 -10 -10 -10 | XENE H N .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 RATHION H -10 -10 -10 -10 -10 | N N N N N N N N N N N N N N N N N N N | T I I I I I I I I I I I I I I I I I I I | PC8 1254 H M - 50 93 80 120 | -11
-11
-11
-11
-126
H
N
-50
-50
54
72 | H N N 15 5 5 5 5 5 5 5 5 5 5 5 5 6 7 7 7 7 7 8 7 9 7 9 7 9 7 9 7 9 7 9 7 9 | N - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | H
H
H
H
H
H
H
H | | | | 109.10.10
109.10.10
111.12.01
519.10.06
520.11.03
520.11.03
520.11.03
526.42.02
STATION
109.10.10
109.10.10
111.12.01
111.12.01
111.10.01
111.10.01 | H H H H H H H H H H H H H H H H H H H | N N N S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N S S S S S S S S S S S S S S S S S S | GAMHA # # -2.0 -2.0 -2 -2 -2 -2 -2 -2 | YCHLON | CI EI N N N N N N N N N N N N N N N N N N | HLOR CHL
POXIDE BEN N N -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 -5 -2 RATHION PA HYL ME N -10 -10 -10 | ZENE H M .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .10 .1 | N N N N N N N N N N N N N N N N N N N | TO THE STATE OF TH | PC8 1254 H # 750 93 -50 80 | -1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-50
-50
-50 | H N 15 5 5 5 5 5 5 5 5 5 6 7 TOTAL D PCB H H D PCB 93 0 134 | N -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 | H
H
H
H
H
H
H
H | | | N = not analyzed. - = below indicated detection limit. D = below Metection limit (no limit indicated). $[\]star$ not within northern district but within the monitoring area 1984 (continued) | HOTTATE | PENTA
CHLOROPHENOL | PERTHAHE | PHENKAPTON | PHORATE | PRONANTO | RONNEL | SIMAZIN | STROBANE | TCE | TETRADIFON | TOXAPHEN | # PEAK | \$>\$PPB
THYL ETHER | |------------------------|------------------------------|----------|---------------------------------|---------|----------|-----------------|------------|--------------------|-----|--------------------|----------|---------------------------|---------------------------------| | 107.10.10 | 2.6 | N | N | H | H | . N | H | H | N | N | Ħ | | N | | 109.10.10 | - <u>2.6</u>
7.2 | N | × | N | N | N | H | H | Ħ | H | H | | K | | 111.12.01 | N | - 150 | - 15 | - 60 | · 14 | . •5 | Ħ | -200 | N | - 10 | -100 | | W | | 519,10,06 | X H | - 150 | - 15 | -60 | N | - 5 | N | -200 | Ħ | - to | 450 | | N | | 520.11.03 | # H | - 150 | - 15 | -60 | H | ٠, ح | <i>H</i> . | ·200 | * | -10 | -100 | | W | | 520.11.03 | * 11 | - 150 | · 15 | -60 | H | .5 | ä | - 200 | Ä | - 10 | -100 | | Ÿ | | 520.11.03; | K∙ N | - 150 | - 15 | -60 | Ħ | ٠, | Ħ | -200 | H | -10 | 450 | | Ä | | 526.42.02 [°] | 11 | - 150 | · 15 | -60 | Ħ | - 5 | H | - 500 | Ħ | - 10 | -100 | | H | | 526.42.02 | N | - 150 | - 15 | -60 | Ħ | ٠5 | Ħ | . 200 | Ħ | - 10 | -100 | | N | | STATION | # PEAKS
@ 6% ETT
ETHER | | # PEAKS :
@ 15% eti
ether | | | 4-D
OBUTYL I | | .4.0
I-BUTYL ES | TER | 7,4-D
ISOPROPYL | ESTER | TETRA
CHLORO
PHENOL | DICHLORO
BENZO
PHENONE P, | | 107.10.10 | N | | | | н | | И | n | | | N N | 1.7 | H | | 09.10.10 | ii ii | | Ħ | | Ĥ | | W | ĸ | | | H. | 2.6 | · N | | 111.12.01 | R | | N | | N | • 1 | 00 | -100 | | -1 | 00 | - N | 1 | | 519.10.06 | н | | H | | M | | 00 | - 100 | 1 | -1 | 00 | H | 37 | | 520.11.03 | u | | ü | | Ñ | • • • | | -100 | | | 00 | u | N | | 520.11.03 | 11 | | N | | N | | 00 | - 100 | | | 00 | ü | H | | 520.11.03 | N | | Ñ | | N | | 00 | 100 | | | 00 | ÿ | H | | 526.42.02 | | | ii. | | N | | 00 | - 100 | | | 00 | . 11 | tr. | | 526.42.02 | 71 | | | | | | 00 | - 100 | | | 00 | | | N = not analyzed. - = below indicated detection limit. D = below detection limit (no limit indicated). $[\]ensuremath{\mbox{\#}}$ not within northern district but within the monitoring area . #### 1984 ORGANIC CHEMICALS IN SOIL, SEDIMENT OR WATER SAMPLES (ppb, wet weight) | STATION
NUMBER | STATION
NAME | | | TYPE | SAMPLE
Date | | CHLOR
BEN
SIDE | ALPHA
CHLOR
DENE | C18
CHLOR
DANE | |-------------------|--------------------------|------------------------|---------------------------|-----------------------------|-------------------------|------------------------|----------------------|------------------------|----------------------| | - 520.11.03 | COLUSA DRAIN | /KNIGHTS LANDIN | g - | SED | 84-11-20 | | ·0.5 | .0.5 | ·0.5 — | | STATION
NUMBER | GAIMA
CIII.OR
DENE | TRANS
CHLOR
DANE | OXY
CHLOR
DANE | CTS
NONA
CHLOR | TRANS
NONA
CHLOR | TOTAL
CHLOR
DANE | CHLOR
PYRIFOS | DAC
THAL | 0P
1000 | | - 520.11.03 | -0.5 | .0.5 | -0.5 | ∙0.5 | -0.5 | D | -10 | .0.2 | -1 | | STATION
HUMBER | PP
1000 | 0P
'DDE | PP
'DDE | PP
100MU | PP
'DDHS | OP | PP
1001 | TOTAL
DDT | DIAZINON | | 520.11.03 | 5 | - 1 | 8.5 | ·2. | • 3 | -1, | -1 | 4.6 | · 5 | | STATION
NUMBER | DIELDRIN | ENDO
SULFAN
1 | ENDO
SULFAN
11 | ENDO
SUL FAN
SUL FATE | TOTAL
ENDO
SULFAN | ENDRIN | ALPRA
HCR | BETA
HCH | GANHA
RCH | | 520.11.03 | -0.5 | .0.5 | | . N | D | - 15 | -0,2 | •1 | .0.2 | | STATION
NUMBER | DELTA
IICII | CIILOR | HEXA
CHLORO
BENZENE | PC8
1242 | PC8
1248 | PC9
1254 | TOTAL . | PARA
THION | TOXA
PHENE | | 520.11.03 | -0.5 | 0.5 | -0.2 | · 5 | -5 |
.5 | D | -1 | -10 | ^{*} NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA ## TOXIC SUBSIANCES MONITORING PROGRAM SUMMARY OF 1985 DATA: ORGANIC CHEMICALS IN FISH (ppb, wet weight) | STATEON | STATI | ION HAVE | | | | COSHOS | HAME | | | 115
11 | | SAMPLE
DATE | Aldrin | Eliter-
dine | cls.
Chlor-
dane | gamaa
Chlor
dene | | ėnš-
lor-
ne | cis.
Hona
chlo | | chier | fotal
Chior-
dane | |--|------------------------------|----------------------------|----------------------------|------------------------|-------------------|---|------|----------------------|------------|-------------------|-----------------------------|--|----------------------------|------------------------------|----------------------------|----------------------------|------------------|------------------------|----------------------------|------------------------------|--------------------------------|--------------------------| | 167.16.16
107.10.10
\$20.11.01
\$20.11.03 | COLLISA DR | !
AIH/KHIG | | | | SCULFIN
SUCKER
CHANNEL
WITTE C | CAI | | ı | | | 08/29/85
03/29/85
07/08/85
07/06/85 | HĀ
NA
15.
< 3. | #A
#A
4 5.
4 5. | RÃ
MA
← 5.0
← 5.0 | ₩A
₩A
< 3.0
< 3.0 | • | | RA
NA
< 5.0
< 5.0 | | #A
#A
< \$.0
< \$.0 | HA
HA
5.7
8.6 | | STATION | Eliter:
pyr Hes | Dac Hint | 0,p'
000 | p.p' | o.p | | bo | | p,p' | P.P
DDH | | total
bot | Blazinon | Dicolol
(Kel·
thene) | benzo-
phenon | | ।सः | i End
aut | | Endo:
sul fan | Enclo-
sulfan
Sulfate | intel
Endo-
sultan | | 107, 10, 10
107, 10, 10
320, 11, 03
320, 11, 03 | NA
NA
< 10.
< 10. | | HĀ
HA
< 10.
< 10. | НА
НА
75.
65. | HA
+A
< 10. | | | A
D. | | | #/
4 30.
4 30. | NA
503.0 | | NA
NA
4 100.
4 100. | HA
HA
HA | | ₩A
₩A
25.0 | , | NA
KA
B.O
5.0 | HA
HA
← 70:0
← 70.0 | ₩A
₩A
< 85.0
< 85.0 | . WA
WA
8.0
NO | | STATION | Eirle lii | ech
ech | reta-
nce | đei
nc | 11 | ganma-
HCH
(t Indane) | | Hepi
Ehte
Epoi | 9 F | | 8 -
0 F (1) +
2 (1) + | Ethyl
Para-
thlon | FC8
1248 | PCD
1254 | PCB
1260 | Total
PCB | ch | nta-
lare-
ienol | chl | ore-
riol | loxaphene | Chem
Group
A | | 107, 10, 10
107, 10, 10
520, 11, 03
520, 11, 03 | HA
HA
< 15.0
< 15.0 | 44
44
< 2.0
< 2.0 | #A
#A
< 10.
< 10. | ¢ 5 | | NA
NA
4 2.0
4 2.0 | | #/
< 5. | .0 | 4 5
4 5
4 4 | A
. D | #A
#A
< 10.
< 10, - | HĀ
HĀ
< 30.
4 30. | HA
NA
< 50.
< 50. | NA
NA
< 50:
< 50 | NA
NA
NO | | | | | HA
HA
< 100.0
< 100.0 | HA
HA
53.7
15.0 | #### TOXIC SUBSTANCES MONITORING PROGRAM SUMMARY OF 1985 DATA: ORGANIC CHEMICALS IN FISH (ppb, lipid weight) | \$1AT104 | BIATE | м илие | | | OFFICE N | AHE | 1155UE
TYPE | SAMPLE
DATE | Aldrin | Elpha
Chlor
dena | | r. Chier | | E is .
Nona .
chi or | trans-
Hons-
chlor | Oxy
ehlor
dare | |--------------------------|----------------------------|----------------------------------|----------------|-----------------------|----------------|----------------------------|-----------------------------|------------------------|----------------|------------------------|-----------------------------------|----------------|-----------------------------|----------------------------|--------------------------|-------------------------------| | 109.10.10
109.10.10 | HAD RIVER
MATI RIVER | | | \$F.U | FiX — | | - | 08/29/85 | HĀ
HA | H | | MA H | | | HA
HA | # #
| | \$20.11.03
\$20.11.03 | COLUSA DRA | IN/KNTGNT S
IN/KNTGNTS | LANDING A | City | HFE CAIF | | F | 07/06/85
07/06/85 | 340.6
MD | | 10 | NO N | | | 205.4
633.2 | | | STAT JOH | fotal
Chilar
tlane | thior-
pyrifes | bactlial *** | 0,p1 | p.p'
bub | o,p* | P, F
006 | 0,p | p, p' | р,р'
рону | р, р ¹
вон s | lot et
001 | Bleldrin | Erdo-
sulfan | Ereo-
sulinn | Erelo-
sul fon
Sul face | | 107.10.10
102.10.10 | HĀ TA | NA
NA | HA
NA | HĀ. | ii
H | | | HĀ HĀ
MA HA | ŅĀ.
MA | HA
HA | HĀ.
NA | , HA | HA
HA | HĀ
NA | HX | · NA | | 520.11.03
520.11.03 | 8.205
63.1.2 | ND
ND | ND
ND | MD
ND | 2702.
4785. | | 15493 | . 9 NO | 110
NO | HD: | MD | 18198.7 | 900.9
471.2 | 28A,3
ON | NA
NO
IID | NA
ND
ND | | STATION | finial
Engle-
sulfan | Fodr in | algha:
BCII | gaint
HCH
gaint | | Henta-
chlor
Epoxide | Hexa-
chlora-
bensene | Ethyl
Para
thion | PCB
1248 | PC8
1254 | PC8
1260 | lotal
PCB | Penta-
chloro-
phenol | loxaphi | rne E | hem
roup
A | | 107.10.10 | PrA
NA | HĀ
NA | HA HA | ii
tr | | ŅĀ
NA | HĀ
HA | HA | HA | ĦĀ | MĀ | NĀ | MD - | | | — ## —— | | 520.11.03
520.11.03 | 2005.3
00 | ND
ND | HD
HD | H | D | HD
HD | HD
HD | HA
NO
NO | HA
HD
HO | HA
HD
HD | NA
ND
ND | NA
NO
ND | 119.8
RA
NA | H)
H | 0 1 | NA
1935.2
1106,4 | P_{p_i} NA means that the sample was not avalyzed for the chemical. NO means that the chemical was not detected (detection limit not determined). The means that the chemical was not detected above the indicated limit of detection. F = Filet W = Whole Body Chemical Group Λ includes the sum of ablilu, dieldrin, vadrin, heptachlor, heptachlor epoxide, chlordane, hexachtorocyclobexane, endosulfan, and toxaphene. ^{*} NOT WITHIN NORTHERN DISTRICT BUT WITHIN THE MONITORING AREA # Toxic Substances Honitoring Program Summary of 1986 Data: Organic Chemicals in Fish (ppb, wet weight) | STATICS
MERGIFF | STAIT
HAME | • | | | | | ECYTICN
HAME | | | 115 | | SAMPLE
DATE | Aldrin | sigha-
Chitor-
done | Chior.
Chior. | ganing-
thing-
dens | trens
Chter
dans | · Hers | . Norm. | chier. | Inial
Chlor- | |--|---------------------------------------|----------------------|-------------------------|------------|----------------|-------------------------|----------------------------|-------------------------|-------|-------------------|----------------------|--------------------------------|-----------------------------|----------------------------|---------------------------|---------------------------|---------------------------|----------------------|------------------------|----------------------------|-------------------------| | 165 (58, 38
511,40,00
637,20,01 | MEALIGHTEA
SACRAMENT
SKISAN R/H | n steuch | | | | CAR | LIR TRADI
P
IGENOUTH | | | | | 5371175
07724769
1070876 | <5.0 | <5.0
<5.0
<5.0 | 45.0
9.7
45.0 | <5.0
<5.0
<5.0 | — स्डाह
•\$.6
•\$.6 | 45.0 | 9.2 | - বি:চ
ব্য:চ
ব্য:চ | 16.7
16.7 | | STATION | Eliter - pyr I fos | Dacthal | 0,p | | p.p. | o,p' | p.p'
bbe | o, p'
bo l | p.p. | p.p'
DCHU | | lotal
Dof | Blacknon | Dicolot
(Ket-
thane) | Dichle
benta
phenon | | æ1==1 | ixio-
sulfam | firlo-
sullan
It | tich-
sulfen
Sulfate | intal
Erch-
sulfa | | 107 (50) 55 °
511 (40) 00
637 (20) 01 | <10.0
<10.0
<10.0 | | ₹10.6
₹10.0
₹10.6 | 1 | \$0.0 | ₹10.0
∢10.0
∢10.0 | 360.0 | ₹10.0
₹10.0
₹10.0 | <10.0 | 415.0 | | ИП
410.0
ИВ | <50.0
450.0
MA | <100.0
<100.0
<100.0 | NA
NA
NA | त | | 45.0
45.0
45.0 | NA
NA | WA
WA | NO
NO | | STATEDS
SERVICE | Fish In | 964
964 | | ta:
ICH | ile i | Ħ | gauna
HCH
Liretare | lat
HC | | epta-
Nor | Rept
chlo
Epos | | iera.
chloro-
bonzené | Eifyl
Para-
thion | FCB
1248 | PCB
1254 | FE8
1260 | PCR | 1515 | reis | Engeleal
Green
A | | 105 (50, 36)
511 (40, 00)
637 (20, 01) | <15.0
<15.0
<15.0 | ₹2.0
₹2.0
₹2.0 | - ₹ i & | 0.1 | - रहे.
- इ. | 0 | ₹2.0
₹2.0
₹2.0 | RD
HD
HD | 4 | 3.0
3.0
5.0 | -5.5
0.8≻
1.8≻ | • | ₹2.0
₹2.0
₹2.0 | <10.0
<10.0
MA | <50.0
<50.0
<50.0 | <50.0
59.0
<50.0 | <50.0
<50.0
<50.0 | 59.0 | | | 18. P | HA Hears that the sample was not analyzed for the chemical. ## Toxic Substances Monitoring Program Summary of 1986 Data: Organic Chemicals in Fish (ppb, lipid weight) | STATION
MUMIER | STATES. | AT . | | | HAME
ECHTICH | | 1135UE
TYPE | SAMPLE | altha.
Chior-
dene | elg.
Chtor-
dane | Entire ·
Chlor ·
dene | Chlor. | Heria- 1 | rans
lova
filor | Oxy
chlor
dans | ioini
Chier-
chier | |--|--|--------------------------|-----|--------|------------------------------|----------------------------|----------------|----------------------------------|-------------------------------|-------------------------|-----------------------------|-------------------------------|------------|-----------------------|----------------------|--------------------------| | 164 57, 52,
511, 40, 60
637 20, 01 | REALIGHTON
SACRAMENTO
SUSAN RANG | r strixii 🛠 | | CA | IJA TARIJI
RP
Grencutn | | | 03711783
07/24/86
10/08/86 | NO. | NO
176.8
NO | MD
MD
MD | , HD
NO
NO | | R5.8
HD | R6
NO | ₽0
3.43 . ¢
₩0 | | STATION
MINNER | ryrlfos | Onethal | 0,p | p.p. | 0,p' | p,p'
DDE | 0,0' | P.P' | p.p1
00HU | lotel | Dicarol
(Kel·
thane) | Pichlora
benta-
phenore | 01519 | | Erelo
sulfan | Field:
Sulfan | | 03.50.54
511.40.00 | 96 | in | HØ | II) | 110 | 70 | HO | NO. | <u>M</u> | 90 | ×0 | - NA | | | 50 | | | | KO | HO | NO | 1014.2 | NO | 7302.2 | ЖÓ | XD |
NO ON | 6316.4 | HO | NA. | NO | | HD. | RA. | | 37,20,01 | HD | M) | HĐ | MD | иņ | Mh | ME | HO | M) | ND | ¥Ď. | MA | HA | | ND. | PA. | | STATION
HERMER | tivi;
sulfan
Sulfate | lotal
Eirlo-
sutfa | | | atina-
nen | gains
NCN
(Efreises) | HCM | licrita-
chior
Epoxide | Reserve
chlora-
benzene | Ethyl
Parn-
thion | FC#
1254 | FCB
1260 | FC# | Faxap | hene | Elienien
Group
A | | 165.56.35 | Hi | MO | | NO | ND. | NO | MÖ | HO | HÖ | NO | NO NO | NO | R . | | - | pp | | 511.40.00 | HA | NO | | ND | MO | HD | ND | NO | ND | ж | 1176.8 | ND | 1195.8 | , , | | 3713.4 | | 637.20.01 | ĦĀ | RD. | | NO | ND | ND | HO | ND | | WA | MD | iko | 1179.0 | R | | 2413.4
RD | NA Heard that the sample was not detected interthe chemical. NO Heard that the chemical was not detected interesting limit not determined). Chemical Group A includes the sum of aldrin, dieldrin, endrin, heptachlor, heptachlor epoxide, chlordane, hexachlorocyclobexane, endosullan, and toxaphene. Homes that the chemical was not detected (detection limit not determined), ^{7 =} filet W = Whole Body f = filet ## Toxic Substances Monitoring Program Summary of 1987 Data: Organic Chemicals in Fish (ppb, wet weight) | \$18169
Marora | | SEAT FOW | | | trecies
trace | I 4 S S U E
E Y P E | SAMPLE | ALUF IF | Chlor
dene | | garma ·
Chtor ·
dene | trens.
Chilare
dans | None- | fränd:
Nord:
chlor | dane
dane | loial -
Chtor -
dane | Elilor:
pyrllo | 665163 | de In | |--------------------------|---------------------|--------------------------|------------|-------------------|------------------|------------------------|----------|------------|---|-------------------|----------------------------|---------------------------|----------------|--------------------------|------------------|----------------------------|-------------------|----------|-----------------------| | 168,11,163 | 140000 | i #2624 # | 3614 19KB | A | 111 | 1 | 85718782 | ES | HZ | | 11 | | | III | MX | - pt | #X | _ ## | \$£ | | 111.17.01 | EEL #/ | SCOISA | | | SCP | j. | 07/10/8 | | HA | · NA | MA | WA | MA | MA | MA | N4 | MA | A.N | HA. | | 111.21.01 | | ZER RYMON | H M | | 184 | Ţ | 07/11/8 | | MA | He | 24 | MA | MA | KA
AK | HA
HA | pa
na | WA. | TR. | ¥4
#4 | | 111.21.07 | | 54/26411#
71014 FAR | - | | 185
867 | , | 07/11/8/ | | WA | MA. | WA | WA | RA
<\$.8 | 3.0 | ₹5.0 | ND | <10.0 | 45.0 | 3.0 | | 115.72.01 | | /1915 LAL | | | SP. | ŭ | 10/20/87 | | <5.8 | 43.0 | 45.0 | <5.8 | 45.0 | 3.0 | 45.0 | 110 | (D.0 | 3.0 | (5.0 | | 508.10.42 | | HIO #/1E | | | 101 | i | 10/08/87 | | 43.0 | 45.0 | -3.0 | 3.1 | 45.0 | 43.0 | 45.0 | ND | 10.0 | 3.9 | 45.0 | | 110 to 42 | PACLANI | THIO B/ET | SUITE | | 588 | ī | 10/08/82 | | -5.0 | 45.0 | 45.0 | 45.0 | 45.0 | 45.0 | (5.0 | ND | 110.0 | -5.6 | 45.0 | | 519.22.01 | SACHAME | Pla Stru | IGR 💥 | | LHB | F | 08/21/87 | | <5.0 | -5.0 | <5.0 | <5.0 | <5.0 | <5.0 | 45.6 | MD | <10.0 | <\$.0 | <5.0 | | 319.22.70 | PEATRE | 1 8/0/5 H | 101 64 MBC | * | 3HB | F | 08/25/87 | <5.0 | <5.0 | 43.0 | <\$.0 | <\$.D | <5.0 | <3.0 | <5.0 | ND | <10.0 | 15.0 | <\$.0 | | 520.21.50
526.65,10 | COLUSA | DAVINAL | IIGMIS CAN | n i wr 🥂 | CCT | ! | 07/25/8 | | 45.0 | 45.0 | <5.0 | 45.0 | 4\$.D | 45.0 | 43.0 | HD | 410.0 | e\$.0 | | | | | | | | Ect | , | 10/20/03 | | <5.0 | 45.0 | <5.0 | <5.0 | 45.0 | <5.0 | <5.0 | MD | +10.0 | 45.0 | <\$.0 | | \$78.81,10 | F F C 470 | 75 HVY 7 | 77 015 | | SER | • | 10/50/41 | 45.0 | 45.0 | 43.0 | <5.0 | 45.0 | +\$.6 | 45.5 | <\$.0 | NO | in.è | 45.0 | ·5.0 | | # 10 1 A 1 Z | n.p | F.P | o.p | P.P. | 0.0
001 | | ,p' p | | P.P. | 1011 | BIZZIET | - 686 | BIBEING | i Ende- | | an gir | lfan I | intel | "स्त्रतः।तः | | 127:11 27 | | | | | | | _ | | | | | | | , | 11 | 511 | linte : | tul fars | | | 165:11 65
111:12:01 | HĀ. | 77 | NA | HA | PI | P | | i | NA. | | ## | WX- | W. | NA | | | FI | - FA | #1 | | 111.21.01 | RA. | HA
HA | NA
NA | #4
*** | le A | K | | <u> </u> | MA | MA | • #A | RA | MA | MA | NA | | RA. | NA NA | HA. | | 111.21.02 | SA. | UA | WA. | HA
AM | AN
Au | . 4 | | ra
.a | XA. | MA | MA | 神典 | NA | MR | HA | 1 | HA | 84 | iii. | | 115.92 01 | +10.6 | -10 D | 10.0 | 6.4 | *10.1 | | | | #A | MA. | C. NA | HA | PA . | MA | NA | | HA | AR | 44 | | 115.72.01 | 10.0 | 10.0 | 10.0 | -5.0 | 10 | | | | 30.0 | 6. ¢
PO | *100.0 | NA
NA | 450.0
450.0 | 45.1 | | | MA | ЖÐ | <15.0 | | 508. ID 42 | - 10 O | -10 0 | 410.0 | 9.9 | 10.0 | | | | 30.D | 9.9 | *100.0 | 70 | | a 45.5 | | | KA - | MD | 415.0 | | 598 10 42 | + 10 0 | +10 B | -19 9 | 11.0 | 10 1 | | | | 30.0 | 33.0 | <100.0 | WA. | <50.0
<50.0 | | | | 15.0
15.0 | ND
ND | <15.0 | | 519.22.01 | <10.0 | <10.0 | <10.0 | 53.0 | <10.0 | - (1 | 0.0 41 | | 30.D | 53.0 | <100.B | WA | <\$0.0 | €3. | | | HÅ. | ND. | 415.Q | | 519.22.90 | <10.0 | 10.0 | +10.0 | 14.0 | <10.I | | 7.D < | 3.0 | 30.0 | 14.0 | 4100.0 | NA | <50.B | 3. | | | RA
RÅ | ND. | 115.0 | | \$20.21.50
\$26.65.10 | *10.0
<10.0 | \$7.0 | 110.0 | 170.0 | <10.0 | | | | 30.0 | 247.0 | <100.0 | WA. | 450.€ | 45.1 | | | 85.0 | NO | <15.0 | | | | <10.0 | <10.0 | , 45.0 | <10.0 | | | | 30.0 | . NO | <100.0 | MA | 450.0 | <\$.1 | | | MA | NG. | <15.0 | | \$26,64.1n | +101,0 | rte, e | < IH , D | -5.0 | .10. | | | | 10.0 | NB | +100.0 | WA | +50.0 | <5.0 |) #A | , | 4.4 | 14th | e13.11 | | STATION
STATION | 51 ₇ 253 | Political
Political | nen , | MCH
Et levlare | I ACH | | inr ci | stor. (| leis:
chtere-
bentene | Feiliary
chlor | Elfiyl
para-
thion | FC 1 | | 254 | FEB
1260 | 15141
rce | Takan | iana t | Sealest
Grown
A | | 163:15 65 | · ha | · 84 ·· | ps | pt | | R | , | i | | | | | | | | | | | | | 111 12 01 | NA. | NA
NA | RA. | H A | ** | r
H | | IA
IA | RA
NA | NA. | 74 | H | | | II. | HI. | , | | II | | 111.21.01 | HA | WA | HA | H4 | ×4 | ,
k | | in. | NA
NA | NA. | NA
NA | . 24
24 | . H | | HA
HA | NA
Na | × | | MA
MA | | 111.21.02 | WA | 44 | NA. | WA | WA | N. | | A | NA | WA. | ×A | WA. | | | NA. | HÀ | * | | RA. | | 115.92.01 | 45.0 | 10 0 | 45.0 | +5.0 | NO | | | 3 · 0 | -2.0 | <15.0 | e10.0 | 430. | | | ₹50.0 | ND | ٠١ ٥ | | NO | | 115.72 Q1
308.10 42 | 12.0 | *10.0 | 45.0 | -5.0 | 1111 | | | 5.0 | 42.0 | <15.0 | <10.0 | 450. | | | 450.0 | HĐ | +10 | | NO. | | 508.18.47 | -2.0 | 10.0 | -5.0 | 5.0 | ND
UN | | | 5 9 | 12.0 | 115.0 | 10.0 | <50. | | | 4 5 0.0 | NO | 110 | | WD
WD | | 519.22.01 | <2.0 | <10.0 | -5.D | ₹.0 | - | | | 3.0 | 45.0 | <15.0 | <10.0 | <50. | | 1.0 | 52.0 | 52.0 | | | MD
MD | | 519.22.90 | <2.0 | e10.0 | 45.0 | 42.0 | MD
MD | | | 5.0
5.0 | <z.0< td=""><td>< 13.0</td><td><10.0</td><td><\$0.</td><td></td><td></td><td><\$0.0
<\$0.0</td><td>MD
MD</td><td><10
<10</td><td></td><td>ND</td></z.0<> | < 13.0 | <10.0 | <\$0. | | | <\$0.0
<\$0.0 | MD
MD | <10
<10 | | ND | | 520.21.50 | 42.0 | <10.0 | <5.0 | 2.0 | ND
ND | | | 3.0
3.0 | 42.0 | <15.0 | <10.0
<10.0 | <\$0.
4\$0. | | | <30.0
<50.0 | NO. | 410
410 | | NO | | 526,65,10 | 47.0 | 10.0 | 45.0 | 42.0 | MD | | | 5.0 | 42.0 | 15.0 | <10.0 | 450. | | | <50.0 | HD | | 0.0 | MD. | | 254.14.10 | 15.10 | A. at. | 45.70 | 7.0 | Иħ | • | | 45.0 | 12.0 | ₹15.B | <10.0 | 450. | | | 450.B | нв | | 9.0 | WD | | Summary of 1987 Data: Organic Chemicals in Fish (ppb, lipid w | relabil) | |---|----------| |---|----------| | | | | - | | | | _113F15 | | | # Le tivit . | ti nns · | | front. | 7.7. | 15761 | |------------------------|-----------------|--------------|----------|----------|------------|---------------|----------|-----------|----------|--------------|------------|----------|--------------------|-----------|----------| | STATION | 5348109 | | | 113312 | | SAMPLE | #1G: 111 | Chier | chitor | | chtor- | HO19 | Rgit 1: | chlar - | thiar. | | Mi bered B | HAFF | | | ECENE | 1115 | DATE | | d-n- | dane | dene | dane | chtor | ehl o r | dane | dane | | 16X .11 65 | 18 16 11 8 16. | is midia ba | Ud li | 1 661 | | ** 69718787** | NI | na | | | tx | - 11 | zi | | FI | | | EEL MISCOLL | | | SCF | ì | 09/10/87 | NA. | NA | 24 | HA | HÀ | #4 | NA. | HA. | Ke | | 111.21.01 | VAN DITZET R | /Mc1111 | | 188 | , | 07/11/87 | HA | NA. | HA | MA | NA. | RA | NA | H4 | WA | | | PAGER CRYPTS | | | 881 | , | 97/11/87 | MA | NA | MA | WA | NA. | MA | HR | HA | YA. | | | TOSS BYTTHE | | | RC11 | v | 10/20/87 | HD | #Đ | . 40 | ND | ЯÜ | NO ' | NO ON | MD. | PD D4 | | | fost evide | | | 5F* | ν | 10/20/87 | RD | N.D. | 70 | 140 | MO. | 10 (| NO. | MO | KD | | | Zur kruf nitt ! | | | 891 | , | 10/08/87 | KA | ND | RD | NO | HĎ | MD | , KD | RD | ND . | | | SACRAMENIA | | | 26.0 | , | 10/05/87 | *D | MD | NR | NO | HD | MB | HD | MD . | MD | | 519.22.01 | SACRAPENTO S | Strange 🇨 | | 1.HB | ! | 08/21/87 | ND | סא | WD | HD | HØ | ND | MD | NO. | MP | | \$19.22.50 | FEATHER BAD, | 12 HOL 25 b | 18G 28- | \$118 | ! | 00/25/87 | ND | ND | MD | HĐ | NP . | MD | WD | ND | KD | | | COLUSA BRAIN | | AND INC. | 123 | ! | 09/25/87 | MD | ND | XD. | KĐ | HO | ND | KD
KD | NO
NO | ND
ND | | | PET NAMES IN | | | 54.8 | , | 10/20/87 | HD
HD | NĐ
Hei | 90
90 | ND
NO | NO
NO | ND . | NO
NO | ND
ND | | | 1, 15, 144, 150 | ELL AMOS II | Dt 2.2 list. | | SCR | • | 10/20/87 | MP | P(t) | ЯIJ | mp | RO . | MU . | H13 | RTI | NO | | | istai | 656 ibal | ě, jř | | ē, p; | F. 6: | 7.5 | p. 6' | - p.p: | 72651 | - 6124371A | Prela: | 635 | 11276 | 15151 | | \$1A1101 | Ove 1 fms | 17.41 17.41 |
DIND. | 9711 | DDF | DOE | 001 | 001 | 00/51 | 501 | | sul fan | sulfan | giel lute | Ervio. | | Mitting B | | | | , | | | * | | • | ••• | | ' i . | 11 | Sul tate | RUE FRO | | 177:14 5- | | | | | | | | | | | —— II — | — az — | ## | BI | | | 156, 13, 65 | ñλ | 24 | HA. | RA. | PA PA | HA. | NA | NA. | . HA | 114 | 74 | NA
AR | 20 | HA | WA | | 111.12.01 | IIA
Kā | hv
Hv | MA
MA | NA
Ha | #A | HA
HA | HA. | NA
NA | HA. | NA
NA | ÄÄ | #A | MA | NA. | 1 84 | | 111.21.07 | IIA. | PA. | ILA | NA. | WA. | AR | ¥A. | NA. | HA. | WA. | IIA | HA | MA | HA. | MA | | 115.92.01 | 110 | lib
Gill | 90 | HO | Ne | 766.3 | K0 | ND. | 20 | 766.3 | , 10 | ND | HA | HA | NO | | 115.22.01 | *** | vin | WD. | HD | 70 | 107 | ND . | ND. | HO | 40 | 110 | MD | MA | HA | чb | | 508.10.62 | | 71.7 | HD | IND | MD | 156.4 | MD | ×O | HD . | 156.4 | MD | NO. | HD | *D | ИÐ | | 500, 10, 42 | 1111 | MD | 110 | PO. | MD | 502.3 | MD | XO | ИĎ | 502.5 | NO | MD | ni. | NO | *0 | | \$17.22.01 | 1rD | HO | WD. | KD | WD | 23043.5 | ND | MD | ND | 23043.5 | XD. | MD. | NA | 21 | ND | | 319.22.50 | MD | HD | KD | 10 | KD | 5384.6 | KD | ND | NO | 3394.6 | #D | MD | NA. | MA | ND | | \$20.21.50 | HD | MD | ND | 5588.2 | KD | 18627.4 | HD | WD | ND | 24715.6 | NO . | KD | MD | NO | ЯÐ | | 526.65.10 | ND | ND | ИÐ | NO | ND | ND | ND | WD | ND | MD | MD | ND. | MA | *4 | M.D. | | \$26,63,30 | Hitt | Lħ. | Mb | up | RD | סע | Mb | HĐ . | ИÐ | ND | ¥0 | 100 | HĄ | WR | ИÞ | | | - maria | ng.pena : | | ai ai | Neel a | Rei I | Retho | | Finia: | - #54 | - FEB | 15151 | | agrene | the lest | | 51A1104 | £150 (4) | ORH. | | BC# | chipr | chlore | chlo | | chlore. | 1234 | 1260 | PCB | | | Sr prep | | HI DSHED | | CL Livlar | | IM.N | Eprix lide | benrane | Çii di | | thena! | 1234 | 1450 | | | | Ä | | | | | | | • | | | | • | | | | | | | | 103013-03 | | A | | . M# | 81 | NA | P1 | | _314:5_ | ž. | | #1 | | 94 | 11 | | 111.12.01 | KW | #A | | Ma. | P4 | HÁ | NA. | | ЖĐ | 84 | HA | WA | | K4
H4 | HA
HA | | 111.21 01 | | NA | | MA | HA | H4 | RA | | ND | 114 | NA
NA | H4
VA | | YA. | 44 | | 111 21 02 | | MA | | 14 | WA | SA. | 48 | | MO | HA | ND | ND | | ND | סע | | 115.92.01 | | HD | | ND | 40 .
Uk | NO
HD | NO
NO | | HA
HA | NG
NO | WD CH | MD | | MD | פע | | 115.92 91 | | HD
HD | | ND
ND | HO HO | MD
MD | NO
RB | | NA
NA | HQ | . 10 | פא | | NO | HD | | 508.10 47
508.10.47 | | HO | | MD
MD | HD HD | KD. | NO
NO | | HA. | MD
MD | 771.5 | | 5 | ND | ИÐ | | \$19.22.01 | | NO
NO | | MD. | ND . | #D | HO | | ¥4 | ND | MD | MD | | NO | NO | | \$19.22.90 | | NO
NO | | NO
NO | KD. | , MD | RO | | ¥A | ND | ND. | ND. | | ND. | . ND | | 520.21.50 | | #D | | NO. | ND. | MD. | HO | | ŔĀ | ND ND | MD | WD | | ND | ND | | 576.61.11 | | RD | | ¥Đ | ND | NO | Wb | | HÃ | ИĎ | NO | KD | | ND | RĐ. | | 526,65,1 | 40 0 | , are | | MD. | 4479 | MĐ | WE | ļi. | WA | NO. | · NO | ND | | M(T) | ND. | | | | | | | | | | | | | | | | | | AN Alexans that the sample was not analyzed for the chemical. An Alexans that the showlest was not detected. Thomas that the chemical was not detected above the indicated limit of detection. F = Filet . W = Whole Body the ode of Group A includes the sum of shiftin, dichlain, ending hypercular, heptschlor spoulds, the ideas, hove blomey clobe sone, reduciden, and toxaphene Y THE CONTINUE ENDOTTIONS INCOMED BUT WITHIN THE RESISTANDING AREA # Species Analyzed During the 1987 Toxic Substances Monitoring Program Listed by Code | WITHIN NORTHERN DISTRICT AND THE MONITORING AREA | | | | | |--|------------------|---------------------------|---------------|--| | Code | Common Name | Species | Family | | | CCF | Channel Catfish | lctalurus punctatus | lctaluridae | | | GSF | Green Sunlish | Lepomis cyanellus | Centrarchidae | | | LMB | Largemouth Bass | Micropterus salmoides | Centrarchidae | | | RBT | Ralnbow Trout | Salmo galrdneri | Salmonidae | | | RCH | Callfornia Roach | Hesperoleucus symmetricus | Cyprinidae | | | SCP | Sculpin | Cottus sp. | Cottldae | | | SKIT | Sucker | Calosiomus sp. | Catostomidae | | | SMB | Smallmouth Bass | Micropterus dolomieul | Centrarchidae | | | SP | Sacramento Perch | Archoplites Interruptus | Centrarchidae | | | | | | | | - 1 #### 1987 Toxic Substances Monitoring Program Station Number Changes | New Station
Number | Old Station
Number | Station Name | | |-----------------------|-----------------------|---------------------------------------|---| | 109 10.06 | 109.10.10 | Mad River | | | 504.20.03 | 523.12.10 | Sacramento River/Hamilton city | | | 506.10.00 | 526.22.00 | Mccloud River/McCloud River Bridge | | | 506.10.03 | 525.11.01 | Shasta Lake/Squaw Creek Arm | | | 500.10.42 | 524.47.15 | Sacramento River/Keswick | | | 519 22.01 | 511.40.00 | * Sacramento Slough | | | 519.22.90 | 511.40.04 | * Feather River/D/S Highway 99 Bridge | | | 520.10.00 | 519.10.07 | ₩ Neclamation Slough | | | 520 10.04 | 519.10.06 | * Sutter Bypass | • | | 520.21.90 | 520.11.03 | * Colusa Drain/Knights Landing | | | 520.21.91 | 520.11.36 | Colusa Drain/Abel Road | | | 526.41.06 | 526.42.02 | Fall River | | ## Toxic Substances Monitoring Program Station Name Changes | Station
Number | New Station Hame | Old Station Name | | |-------------------|---|-------------------------|-----| | | • · · · · · · · · · · · · · · · · · · · | | • | | 506. FD. OO | Hotland River/H/S Hotland River Bridge | McCloud River | | | 19,22,20 | Teather River/D/S Highway 97 Aridge | fenther River/Nicholas | • • | | 26.63,10 | Pit River/D/S Hwy 299 Bridge | Plt River/D/S Hodoc Nur | • | | 37.20,22 | Suson River/Litchfield | Susan River | |